Your browser doesn't support javascript.
loading
A Hybrid Ionic and Electronic Conductive Coating Layer for Enhanced Electrochemical Performance of 4.6 V LiCoO2.
Cheng, Tao; Cheng, Qin; He, Yun; Ge, Menghan; Feng, Zhijie; Li, Panpan; Huang, Yijia; Zheng, Jieyun; Lyu, Yingchun; Guo, Bingkun.
Afiliación
  • Cheng T; Materials Genome Institute, Shanghai University, Shanghai 200444, China.
  • Cheng Q; Materials Genome Institute, Shanghai University, Shanghai 200444, China.
  • He Y; Materials Genome Institute, Shanghai University, Shanghai 200444, China.
  • Ge M; Materials Genome Institute, Shanghai University, Shanghai 200444, China.
  • Feng Z; Materials Genome Institute, Shanghai University, Shanghai 200444, China.
  • Li P; Materials Genome Institute, Shanghai University, Shanghai 200444, China.
  • Huang Y; Materials Genome Institute, Shanghai University, Shanghai 200444, China.
  • Zheng J; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
  • Lyu Y; Materials Genome Institute, Shanghai University, Shanghai 200444, China.
  • Guo B; Materials Genome Institute, Shanghai University, Shanghai 200444, China.
ACS Appl Mater Interfaces ; 13(36): 42917-42926, 2021 Sep 15.
Article en En | MEDLINE | ID: mdl-34478622
ABSTRACT
The LiCoO2 cathode undergoes undesirable electrochemical performance when cycled with a high cut-off voltage (≥4.5 V versus Li/Li+). The unstable interface with poor kinetics is one of the main contributors to the performance failure. Hence, a hybrid Li-ion conductor (Li1.5Al0.5Ge1.5P3O12) and electron conductor (Al-doped ZnO) coating layer was built on the LiCoO2 surface. Characterization studies prove that a thick and conductive layer is homogeneously covered on LiCoO2 particles. The coating layer can not only enhance the interfacial ionic and electronic transport kinetics but also act as a protective layer to suppress the side reactions between the cathode and electrolyte. The modified LiCoO2 (HC-LCO) achieves an excellent cycling stability (77.1% capacity retention after 350 cycles at 1C) and rate capability (139.8 mAh g-1 at 10C) at 3.0-4.6 V. Investigations show that the protective layer can inhibit the particle cracks and Co dissolution and stabilize the cathode electrolyte interface (CEI). Furthermore, the irreversible phase transformation is still observed on the HC-LCO surface, indicating the phase transformation of the LiCoO2 surface may not be the main factor for fast performance failure. This work provides new insight of interfacial design for cathodes operating with a high cut-off voltage.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: China