Your browser doesn't support javascript.
loading
A Bayesian approach for accurate de novo transcriptome assembly.
Shi, Xu; Wang, Xiao; Neuwald, Andrew F; Halakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua.
Afiliación
  • Shi X; Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 900 North Glebe Road, Arlington, VA, 22203, USA.
  • Wang X; Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 900 North Glebe Road, Arlington, VA, 22203, USA.
  • Neuwald AF; Institute for Genome Sciences and Department Biochemistry and Molecular Biology, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA.
  • Halakivi-Clarke L; Hormel Institute, University of Minnesota, 16th Street N, Austin, MN, 55912, USA.
  • Clarke R; Hormel Institute, University of Minnesota, 16th Street N, Austin, MN, 55912, USA.
  • Xuan J; Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 900 North Glebe Road, Arlington, VA, 22203, USA. xuan@vt.edu.
Sci Rep ; 11(1): 17663, 2021 09 03.
Article en En | MEDLINE | ID: mdl-34480063
De novo transcriptome assembly from billions of RNA-seq reads is very challenging due to alternative splicing and various levels of expression, which often leads to incorrect, mis-assembled transcripts. BayesDenovo addresses this problem by using both a read-guided strategy to accurately reconstruct splicing graphs from the RNA-seq data and a Bayesian strategy to estimate, from these graphs, the probability of transcript expression without penalizing poorly expressed transcripts. Simulation and cell line benchmark studies demonstrate that BayesDenovo is very effective in reducing false positives and achieves much higher accuracy than other assemblers, especially for alternatively spliced genes and for highly or poorly expressed transcripts. Moreover, BayesDenovo is more robust on multiple replicates by assembling a larger portion of common transcripts. When applied to breast cancer data, BayesDenovo identifies phenotype-specific transcripts associated with breast cancer recurrence.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / Secuenciación de Nucleótidos de Alto Rendimiento / Transcriptoma Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / Secuenciación de Nucleótidos de Alto Rendimiento / Transcriptoma Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido