A Bayesian approach for accurate de novo transcriptome assembly.
Sci Rep
; 11(1): 17663, 2021 09 03.
Article
en En
| MEDLINE
| ID: mdl-34480063
De novo transcriptome assembly from billions of RNA-seq reads is very challenging due to alternative splicing and various levels of expression, which often leads to incorrect, mis-assembled transcripts. BayesDenovo addresses this problem by using both a read-guided strategy to accurately reconstruct splicing graphs from the RNA-seq data and a Bayesian strategy to estimate, from these graphs, the probability of transcript expression without penalizing poorly expressed transcripts. Simulation and cell line benchmark studies demonstrate that BayesDenovo is very effective in reducing false positives and achieves much higher accuracy than other assemblers, especially for alternatively spliced genes and for highly or poorly expressed transcripts. Moreover, BayesDenovo is more robust on multiple replicates by assembling a larger portion of common transcripts. When applied to breast cancer data, BayesDenovo identifies phenotype-specific transcripts associated with breast cancer recurrence.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Perfilación de la Expresión Génica
/
Secuenciación de Nucleótidos de Alto Rendimiento
/
Transcriptoma
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Sci Rep
Año:
2021
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido