Your browser doesn't support javascript.
loading
Feature selection for support vector regression using a genetic algorithm.
McKearnan, Shannon B; Vock, David M; Marai, G Elisabeta; Canahuate, Guadalupe; Fuller, Clifton D; Wolfson, Julian.
Afiliación
  • McKearnan SB; Division of Biostatistics, University of Minnesota, A460 Mayo Building, MMC 303, 420 Delaware St. SE, Minneapolis, MN 55414, USA.
  • Vock DM; Division of Biostatistics, University of Minnesota, A460 Mayo Building, MMC 303, 420 Delaware St. SE, Minneapolis, MN 55414, USA.
  • Marai GE; Department of Computer Science, The University of Illinois at Chicago, Chicago, IL 60612, USA.
  • Canahuate G; Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA.
  • Fuller CD; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
  • Wolfson J; Division of Biostatistics, University of Minnesota, Minneapolis, MN 55414, USA.
Biostatistics ; 24(2): 295-308, 2023 04 14.
Article en En | MEDLINE | ID: mdl-34494086
Support vector regression (SVR) is particularly beneficial when the outcome and predictors are nonlinearly related. However, when many covariates are available, the method's flexibility can lead to overfitting and an overall loss in predictive accuracy. To overcome this drawback, we develop a feature selection method for SVR based on a genetic algorithm that iteratively searches across potential subsets of covariates to find those that yield the best performance according to a user-defined fitness function. We evaluate the performance of our feature selection method for SVR, comparing it to alternate methods including LASSO and random forest, in a simulation study. We find that our method yields higher predictive accuracy than SVR without feature selection. Our method outperforms LASSO when the relationship between covariates and outcome is nonlinear. Random forest performs equivalently to our method in some scenarios, but more poorly when covariates are correlated. We apply our method to predict donor kidney function 1 year after transplant using data from the United Network for Organ Sharing national registry.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Análisis de Regresión Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biostatistics Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Análisis de Regresión Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biostatistics Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido