Your browser doesn't support javascript.
loading
Reaction inhomogeneity coupling with metal rearrangement triggers electrochemical degradation in lithium-rich layered cathode.
Wang, Liguang; Liu, Tongchao; Dai, Alvin; De Andrade, Vincent; Ren, Yang; Xu, Wenqian; Lee, Sungsik; Zhang, Qinghua; Gu, Lin; Wang, Shun; Wu, Tianpin; Jin, Huile; Lu, Jun.
Afiliación
  • Wang L; Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, China.
  • Liu T; Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada.
  • Dai A; Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
  • De Andrade V; Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
  • Ren Y; X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory, Lemont, IL, USA.
  • Xu W; X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory, Lemont, IL, USA.
  • Lee S; X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory, Lemont, IL, USA.
  • Zhang Q; X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory, Lemont, IL, USA.
  • Gu L; Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Science, Beijing, China.
  • Wang S; Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Science, Beijing, China.
  • Wu T; Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, China.
  • Jin H; X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory, Lemont, IL, USA. twu@anl.gov.
  • Lu J; Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, China. huilejin@wzu.edu.cn.
Nat Commun ; 12(1): 5370, 2021 Sep 10.
Article en En | MEDLINE | ID: mdl-34508097
High-energy density lithium-rich layered oxides are among the most promising candidates for next-generation energy storage. Unfortunately, these materials suffer from severe electrochemical degradation that includes capacity loss and voltage decay during long-term cycling. Present research efforts are primarily focused on understanding voltage decay phenomena while origins for capacity degradation have been largely ignored. Here, we thoroughly investigate causes for electrochemical performance decline with an emphasis on capacity loss in the lithium-rich layered oxides, as well as reaction pathways and kinetics. Advanced synchrotron-based X-ray two-dimensional and three-dimensional imaging techniques are combined with spectroscopic and scattering techniques to spatially visualize the reactivity at multiple length-scales on lithium- and manganese-rich layered oxides. These methods provide direct evidence for inhomogeneous manganese reactivity and ionic nickel rearrangement. Coupling deactivated manganese with nickel migration provides sluggish reaction kinetics and induces serious structural instability in the material. Our findings provide new insights and further understanding of electrochemical degradation, which serve to facilitate cathode material design improvements.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido