Your browser doesn't support javascript.
loading
Anomalous spin relaxation in graphene nanostructures on the high temperature annealed surface of hydrogenated diamond nanoparticles.
Joly, V L Joseph; Takai, Kazuyuki; Kiguchi, Manabu; Komatsu, Naoki; Enoki, Toshiaki.
Afiliación
  • Joly VLJ; Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan. josephjoly@stthomas.ac.in.
  • Takai K; Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan. josephjoly@stthomas.ac.in.
  • Kiguchi M; Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan. josephjoly@stthomas.ac.in.
  • Komatsu N; Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
  • Enoki T; Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan. josephjoly@stthomas.ac.in.
Phys Chem Chem Phys ; 23(35): 19209-19218, 2021 Sep 15.
Article en En | MEDLINE | ID: mdl-34524281
ABSTRACT
The electronic and magnetic structures of diamond nanoparticles with a hydrogenated surface are investigated as a function of annealing temperature under vacuum annealing up to 800-1000 °C. Near edge X-ray absorption fine structure (NEXAFS) spectra together with elemental analysis show successive creation of defect-induced nonbonding surface states at the expense of surface-hydrogen atoms as the annealing temperature is increased above 800 °C. Magnetization and ESR spectra confirm the increase in the concentration of localized spins assigned to the nonbonding surface states upon the increase of the annealing temperature. Around 800 °C, surface defects collectively created upon the annealing result in the formation of graphene nano-islands which possess magnetic nonbonding edge states of π-electron origin. Interestingly, extremely slow spin relaxation is observed in the magnetization of the edge state spins at low temperatures. The relaxation time is well explained in terms of a lognormal distribution of magnetic anisotropy energies instead of the classical Néel relaxation mechanism with a unique magnetic anisotropy energy, in addition to the contribution of the quantum mechanical tunnelling mechanism. The spin-orbit interaction enhanced by the electrostatic potential gradient created at the interface between the core diamond particle and surface graphene nano-islands is responsible for the slow spin relaxation.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Japón