Reducing autocorrelation time in determinant quantum Monte Carlo using the Wang-Landau algorithm: Application to the Holstein model.
Phys Rev E
; 104(2-2): 025305, 2021 Aug.
Article
en En
| MEDLINE
| ID: mdl-34525639
When performing a Monte Carlo calculation, the running time should, in principle, be much longer than the autocorrelation time in order to get reliable results. Among different lattice fermion models, the Holstein model is notorious for its particularly long autocorrelation time. In this paper, we employ the Wang-Landau algorithm in the determinant quantum Monte Carlo to achieve the flat-histogram sampling in the "configuration weight space," which can greatly reduce the autocorrelation time by sacrificing some sampling efficiency. The proposal is checked in the Holstein model on both square and honeycomb lattices. Based on such a Wang-Landau assisted determinant quantum Monte Carlo method, some models with long autocorrelation times can now be simulated possibly.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Phys Rev E
Año:
2021
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos