Your browser doesn't support javascript.
loading
Reducing autocorrelation time in determinant quantum Monte Carlo using the Wang-Landau algorithm: Application to the Holstein model.
Yao, Meng; Wang, Da; Wang, Qiang-Hua.
Afiliación
  • Yao M; National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing, 210093, China.
  • Wang D; National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing, 210093, China.
  • Wang QH; Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
Phys Rev E ; 104(2-2): 025305, 2021 Aug.
Article en En | MEDLINE | ID: mdl-34525639
When performing a Monte Carlo calculation, the running time should, in principle, be much longer than the autocorrelation time in order to get reliable results. Among different lattice fermion models, the Holstein model is notorious for its particularly long autocorrelation time. In this paper, we employ the Wang-Landau algorithm in the determinant quantum Monte Carlo to achieve the flat-histogram sampling in the "configuration weight space," which can greatly reduce the autocorrelation time by sacrificing some sampling efficiency. The proposal is checked in the Holstein model on both square and honeycomb lattices. Based on such a Wang-Landau assisted determinant quantum Monte Carlo method, some models with long autocorrelation times can now be simulated possibly.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos