Your browser doesn't support javascript.
loading
Evidence of two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn.
Han, Minyong; Inoue, Hisashi; Fang, Shiang; John, Caolan; Ye, Linda; Chan, Mun K; Graf, David; Suzuki, Takehito; Ghimire, Madhav Prasad; Cho, Won Joon; Kaxiras, Efthimios; Checkelsky, Joseph G.
Afiliación
  • Han M; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Inoue H; Frontier Research Institute for Interdisciplinary Sciences and Institute for Materials Research, Tohoku University, Miyagi, Japan.
  • Fang S; National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
  • John C; Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, NJ, USA.
  • Ye L; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Chan MK; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Graf D; Department of Applied Physics, Stanford University, Stanford, CA, USA.
  • Suzuki T; National High Magnetic Field Laboratory, LANL, Los Alamos, NM, USA.
  • Ghimire MP; National High Magnetic Field Laboratory, Tallahassee, FL, USA.
  • Cho WJ; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Kaxiras E; Department of Physics, Toho University, Chiba, Japan.
  • Checkelsky JG; Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
Nat Commun ; 12(1): 5345, 2021 Sep 15.
Article en En | MEDLINE | ID: mdl-34526494
ABSTRACT
The kagome lattice has long been regarded as a theoretical framework that connects lattice geometry to unusual singularities in electronic structure. Transition metal kagome compounds have been recently identified as a promising material platform to investigate the long-sought electronic flat band. Here we report the signature of a two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn by means of planar tunneling spectroscopy. Employing a Schottky heterointerface of FeSn and an n-type semiconductor Nb-doped SrTiO3, we observe an anomalous enhancement in tunneling conductance within a finite energy range of FeSn. Our first-principles calculations show this is consistent with a spin-polarized flat band localized at the ferromagnetic kagome layer at the Schottky interface. The spectroscopic capability to characterize the electronic structure of a kagome compound at a thin film heterointerface will provide a unique opportunity to probe flat band induced phenomena in an energy-resolved fashion with simultaneous electrical tuning of its properties. Furthermore, the exotic surface state discussed herein is expected to manifest as peculiar spin-orbit torque signals in heterostructure-based spintronic devices.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos