Your browser doesn't support javascript.
loading
Leveraging the Cell Ontology to classify unseen cell types.
Wang, Sheng; Pisco, Angela Oliveira; McGeever, Aaron; Brbic, Maria; Zitnik, Marinka; Darmanis, Spyros; Leskovec, Jure; Karkanias, Jim; Altman, Russ B.
Afiliación
  • Wang S; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
  • Pisco AO; Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
  • McGeever A; Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA. angela.pisco@czbiohub.org.
  • Brbic M; Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
  • Zitnik M; Department of Computer Science, Stanford University, Stanford, CA, 94305, USA.
  • Darmanis S; Department of Computer Science, Stanford University, Stanford, CA, 94305, USA.
  • Leskovec J; Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
  • Karkanias J; Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
  • Altman RB; Department of Computer Science, Stanford University, Stanford, CA, 94305, USA.
Nat Commun ; 12(1): 5556, 2021 09 21.
Article en En | MEDLINE | ID: mdl-34548483
Single cell technologies are rapidly generating large amounts of data that enables us to understand biological systems at single-cell resolution. However, joint analysis of datasets generated by independent labs remains challenging due to a lack of consistent terminology to describe cell types. Here, we present OnClass, an algorithm and accompanying software for automatically classifying cells into cell types that are part of the controlled vocabulary that forms the Cell Ontology. A key advantage of OnClass is its capability to classify cells into cell types not present in the training data because it uses the Cell Ontology graph to infer cell type relationships. Furthermore, OnClass can be used to identify marker genes for all the cell ontology categories, regardless of whether the cell types are present or absent in the training data, suggesting that OnClass goes beyond a simple annotation tool for single cell datasets, being the first algorithm capable to identify marker genes specific to all terms of the Cell Ontology and offering the possibility of refining the Cell Ontology using a data-centric approach.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Vocabulario Controlado / Linaje de la Célula / Células Eucariotas / Terminología como Asunto Límite: Animals / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Vocabulario Controlado / Linaje de la Célula / Células Eucariotas / Terminología como Asunto Límite: Animals / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido