Comparing classification models-a practical tutorial.
J Comput Aided Mol Des
; 36(5): 381-389, 2022 05.
Article
en En
| MEDLINE
| ID: mdl-34549368
While machine learning models have become a mainstay in Cheminformatics, the field has yet to agree on standards for model evaluation and comparison. In many cases, authors compare methods by performing multiple folds of cross-validation and reporting the mean value for an evaluation metric such as the area under the receiver operating characteristic. These comparisons of mean values often lack statistical rigor and can lead to inaccurate conclusions. In the interest of encouraging best practices, this tutorial provides an example of how multiple methods can be compared in a statistically rigorous fashion.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Aprendizaje Automático
Tipo de estudio:
Guideline
/
Prognostic_studies
Idioma:
En
Revista:
J Comput Aided Mol Des
Asunto de la revista:
BIOLOGIA MOLECULAR
/
ENGENHARIA BIOMEDICA
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Países Bajos