Your browser doesn't support javascript.
loading
The [4Fe4S] Cluster of Yeast DNA Polymerase ε Is Redox Active and Can Undergo DNA-Mediated Signaling.
Pinto, Miguel N; Ter Beek, Josy; Ekanger, Levi A; Johansson, Erik; Barton, Jacqueline K.
Afiliación
  • Pinto MN; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
  • Ter Beek J; Department of Medical Biochemistry and Biophysics, Umeå University, SE-910 87 Umeå, Sweden.
  • Ekanger LA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
  • Johansson E; Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States.
  • Barton JK; Department of Medical Biochemistry and Biophysics, Umeå University, SE-910 87 Umeå, Sweden.
J Am Chem Soc ; 143(39): 16147-16153, 2021 10 06.
Article en En | MEDLINE | ID: mdl-34559527
Many DNA replication and DNA repair enzymes have been found to carry [4Fe4S] clusters. The major leading strand polymerase, DNA polymerase ε (Pol ε) from Saccharomyces cerevisiae, was recently reported to have a [4Fe4S] cluster located within the catalytic domain of the largest subunit, Pol2. Here the redox characteristics of the [4Fe4S] cluster in the context of that domain, Pol2CORE, are explored using DNA electrochemistry, and the effects of oxidation and rereduction on polymerase activity are examined. The exonuclease deficient variant D290A/E292A, Pol2COREexo-, was used to limit DNA degradation. While no redox signal is apparent for Pol2COREexo- on DNA-modified electrodes, a large cathodic signal centered at -140 mV vs NHE is observed after bulk oxidation. A double cysteine to serine mutant (C665S/C668S) of Pol2COREexo-, which lacks the [4Fe4S] cluster, shows no similar redox signal upon oxidation. Significantly, protein oxidation yields a sharp decrease in polymerization, while rereduction restores activity almost to the level of untreated enzyme. Moreover, the addition of reduced EndoIII, a bacterial DNA repair enzyme containing [4Fe4S]2+, to oxidized Pol2COREexo- bound to its DNA substrate also significantly restores polymerase activity. In contrast, parallel experiments with EndoIIIY82A, a variant of EndoIII, defective in DNA charge transport (CT), does not show restoration of activity of Pol2COREexo-. We propose a model in which EndoIII bound to the DNA duplex may shuttle electrons through DNA to the DNA-bound oxidized Pol2COREexo- via DNA CT and that this DNA CT signaling offers a means to modulate the redox state and replication by Pol ε.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae / ADN Polimerasa II / Proteínas Hierro-Azufre Tipo de estudio: Prognostic_studies Idioma: En Revista: J Am Chem Soc Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae / ADN Polimerasa II / Proteínas Hierro-Azufre Tipo de estudio: Prognostic_studies Idioma: En Revista: J Am Chem Soc Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos