Your browser doesn't support javascript.
loading
Cellulose nanocrystals concentration and oil-water ratio for solid-liquid controllable emulsion polymerization.
Tang, Miao; Zhu, Ziqi; Yang, Kai; Yang, Pei; Dong, Yue; Wu, Yakun; Chen, Minzhi; Zhou, Xiaoyan.
Afiliación
  • Tang M; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research C
  • Zhu Z; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research C
  • Yang K; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research C
  • Yang P; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research C
  • Dong Y; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research C
  • Wu Y; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research C
  • Chen M; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research C
  • Zhou X; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research C
Int J Biol Macromol ; 191: 414-421, 2021 Nov 30.
Article en En | MEDLINE | ID: mdl-34562534
ABSTRACT
Stabilities of cellulose Pickering emulsions are of great importance to utilize them effectively, but influenced by their complex compositions, such as, colloidal particles, oil phases and water phases. In this work, solid-liquid controllable polymerization products could obtain by adjusting cellulose nanocrystals (CNCs) concentration and vinyl acetate (VAc)-water ratio. The emulsions in zone Ӏ (w/o) and II (o/w) of the three-phase diagram were selected for researching. The polymerization emulsions in zone II illustrated the o/w ratio played a more important role than CNCs concentration in the storage stability and practicality of the polymerized emulsion; The polymer in zone Ӏ showed a large number of porous structures. This is an innovative method that different forms of target products are obtained through the guidance of three-phase diagram, which not only broadens the application field, but also applies to other Pickering emulsion systems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos de Vinilo / Celulosa / Nanopartículas / Polimerizacion Tipo de estudio: Guideline Idioma: En Revista: Int J Biol Macromol Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos de Vinilo / Celulosa / Nanopartículas / Polimerizacion Tipo de estudio: Guideline Idioma: En Revista: Int J Biol Macromol Año: 2021 Tipo del documento: Article