Your browser doesn't support javascript.
loading
Digital twin of low dosage continuous powder blending - Artificial neural networks and residence time distribution models.
Beke, Áron Kristóf; Gyürkés, Martin; Nagy, Zsombor Kristóf; Marosi, György; Farkas, Attila.
Afiliación
  • Beke ÁK; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Muegyetem rakpart 3, Budapest H-1111, Hungary.
  • Gyürkés M; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Muegyetem rakpart 3, Budapest H-1111, Hungary.
  • Nagy ZK; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Muegyetem rakpart 3, Budapest H-1111, Hungary.
  • Marosi G; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Muegyetem rakpart 3, Budapest H-1111, Hungary.
  • Farkas A; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Muegyetem rakpart 3, Budapest H-1111, Hungary. Electronic address: farkas.attila@vbk.bme.hu.
Eur J Pharm Biopharm ; 169: 64-77, 2021 Dec.
Article en En | MEDLINE | ID: mdl-34562574
In this paper we present a thorough description of the digital twin development for a continuous pharmaceutical powder blending process in accordance with the Process Analytical Technologies (PAT) and Quality by Design (QbD) guidelines. A low-dosage system of caffeine active pharmaceutical ingredient (API) and dextrose excipient was examined via continuous blending experiments. Near infrared (NIR) spectroscopy-based process analytics were applied; quantitative evaluation of spectra was achieved using multivariate data analysis. The blending system was represented with mechanistic residence time distribution (RTD) models and two types of recurrent artificial neural networks (ANN), experimental datasets were used for model training or fitting and validation. Detailed comparison of the two modelling approaches, the optimization of the model-based digital twin, and efficiency of the soft sensor-based process monitoring is presented through several validating simulations. Both RTD models and nonlinear autoregressive neural networks demonstrated excellent predictive power for the low dosage blending process. RTD models can prove to be more advantageous in industrial development as they are less resource-intensive to develop and prediction accuracy on low concentration levels lacks dependency from the precision of chemometric calibration. Reduced material costs and limited development timeframe render the digital twin an efficient tool in technological development.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polvos / Química Farmacéutica / Tecnología Farmacéutica / Composición de Medicamentos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Eur J Pharm Biopharm Asunto de la revista: FARMACIA / FARMACOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Hungria Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polvos / Química Farmacéutica / Tecnología Farmacéutica / Composición de Medicamentos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Eur J Pharm Biopharm Asunto de la revista: FARMACIA / FARMACOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Hungria Pais de publicación: Países Bajos