Your browser doesn't support javascript.
loading
Automated design of pulse sequences for magnetic resonance fingerprinting using physics-inspired optimization.
Jordan, Stephen P; Hu, Siyuan; Rozada, Ignacio; McGivney, Debra F; Boyacioglu, Rasim; Jacob, Darryl C; Huang, Sherry; Beverland, Michael; Katzgraber, Helmut G; Troyer, Matthias; Griswold, Mark A; Ma, Dan.
Afiliación
  • Jordan SP; Quantum Systems, Microsoft, Redmond, WA 98052.
  • Hu S; Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106.
  • Rozada I; Optimization Solutions, 1QBit, Vancouver, BC V6E 4B1, Canada.
  • McGivney DF; Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106.
  • Boyacioglu R; Radiology Department, Case Western Reserve University, Cleveland, OH 44106.
  • Jacob DC; Department of Physics and Astronomy, Texas A & M University, College Station, TX 77843.
  • Huang S; Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106.
  • Beverland M; Quantum Systems, Microsoft, Redmond, WA 98052.
  • Katzgraber HG; Quantum Systems, Microsoft, Redmond, WA 98052.
  • Troyer M; Quantum Systems, Microsoft, Redmond, WA 98052.
  • Griswold MA; Radiology Department, Case Western Reserve University, Cleveland, OH 44106.
  • Ma D; Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106; dan.ma@case.edu.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article en En | MEDLINE | ID: mdl-34593630
ABSTRACT
Magnetic resonance fingerprinting (MRF) is a method to extract quantitative tissue properties such as [Formula see text] and [Formula see text] relaxation rates from arbitrary pulse sequences using conventional MRI hardware. MRF pulse sequences have thousands of tunable parameters, which can be chosen to maximize precision and minimize scan time. Here, we perform de novo automated design of MRF pulse sequences by applying physics-inspired optimization heuristics. Our experimental data suggest that systematic errors dominate over random errors in MRF scans under clinically relevant conditions of high undersampling. Thus, in contrast to prior optimization efforts, which focused on statistical error models, we use a cost function based on explicit first-principles simulation of systematic errors arising from Fourier undersampling and phase variation. The resulting pulse sequences display features qualitatively different from previously used MRF pulse sequences and achieve fourfold shorter scan time than prior human-designed sequences of equivalent precision in [Formula see text] and [Formula see text] Furthermore, the optimization algorithm has discovered the existence of MRF pulse sequences with intrinsic robustness against shading artifacts due to phase variation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2021 Tipo del documento: Article