Your browser doesn't support javascript.
loading
Comparative Efficacy of Rifapentine Alone and in Combination with Isoniazid for Latent Tuberculosis Infection: a Translational Pharmacokinetic-Pharmacodynamic Modeling Study.
Radtke, Kendra K; Ernest, Jacqueline P; Zhang, Nan; Ammerman, Nicole C; Nuermberger, Eric; Belknap, Robert; Boyd, Rosanna; Sterling, Timothy R; Savic, Rada M.
Afiliación
  • Radtke KK; University of California, San Franciscogrid.266102.1, Department of Bioengineering and Therapeutic Sciences, San Francisco, California, USA.
  • Ernest JP; University of California, San Franciscogrid.266102.1, Department of Bioengineering and Therapeutic Sciences, San Francisco, California, USA.
  • Zhang N; University of California, San Franciscogrid.266102.1, Department of Bioengineering and Therapeutic Sciences, San Francisco, California, USA.
  • Ammerman NC; Johns Hopkins Universitygrid.21107.35, Center for Tuberculosis Research, Baltimore, Maryland, USA.
  • Nuermberger E; Erasmus MCgrid.5645.2, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands.
  • Belknap R; Johns Hopkins Universitygrid.21107.35, Center for Tuberculosis Research, Baltimore, Maryland, USA.
  • Boyd R; Denver Health and Hospital Authority, Denver, Colorado, USA.
  • Sterling TR; Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
  • Savic RM; Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Antimicrob Agents Chemother ; 65(12): e0170521, 2021 11 17.
Article en En | MEDLINE | ID: mdl-34606336
ABSTRACT
Rifapentine has facilitated treatment shortening for latent tuberculosis infection (LTBI) in combination with isoniazid once weekly for 3 months (3HP) or daily for 1 month (1HP). Our objective was to determine the optimal rifapentine dose for a 6-week monotherapy regimen (6wP) and predict clinical efficacy. Rifapentine and isoniazid pharmacokinetics were simulated in mice and humans. Mouse lung CFU data were used to characterize exposure-response relationships of 1HP, 3HP, and 6wP and translated to predict clinical efficacy. A 600-mg daily dose for 6wP delivered greater cumulative rifapentine exposure than 1HP or 3HP. The maximum regimen effect (Emax) was 0.24 day-1. The regimen potencies, measured as the concentration at 50% of Emax (EC50), were estimated to be 2.12 mg/liter for 3HP, 3.72 mg/liter for 1HP, and 4.71 mg/liter for 6wP, suggesting that isoniazid contributes little to 1HP efficacy. Clinical translation predicted that 6wP reduces bacterial loads at a higher rate than 3HP and to a greater extent than 3HP and 1HP. 6wP (600 mg daily) is predicted to result in equal or better efficacy than 1HP and 3HP for LTBI treatment without the potential added toxicity of isoniazid. Results from ongoing and future clinical studies will be required to support these findings.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tuberculosis Latente / Isoniazida Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Antimicrob Agents Chemother Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tuberculosis Latente / Isoniazida Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Antimicrob Agents Chemother Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos