Your browser doesn't support javascript.
loading
K2Mem: Discovering Discriminative K-mers From Sequencing Data for Metagenomic Reads Classification.
Article en En | MEDLINE | ID: mdl-34606462
The major problem when analyzing a metagenomic sample is to taxonomically annotate its reads to identify the species they contain. Most of the methods currently available focus on the classification of reads using a set of reference genomes and their k-mers. While in terms of precision these methods have reached percentages of correctness close to perfection, in terms of recall (the actual number of classified reads) the performances fall at around 50%. One of the reasons is the fact that the sequences in a sample can be very different from the corresponding reference genome, e.g., viral genomes are highly mutated. To address this issue, in this paper we study the problem of metagenomic reads classification by improving the reference k-mers library with novel discriminative k-mers from the input sequencing reads. We evaluated the performance in different conditions against several other tools and the results showed an improved F-measure, especially when close reference genomes are not available. Availability: https://github.com.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Metagenómica / Secuenciación de Nucleótidos de Alto Rendimiento Tipo de estudio: Prognostic_studies Idioma: En Revista: ACM Trans Comput Biol Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Metagenómica / Secuenciación de Nucleótidos de Alto Rendimiento Tipo de estudio: Prognostic_studies Idioma: En Revista: ACM Trans Comput Biol Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos