Your browser doesn't support javascript.
loading
Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis.
Zhu, Feng; Alseekh, Saleh; Koper, Kaan; Tong, Hao; Nikoloski, Zoran; Naake, Thomas; Liu, Haijun; Yan, Jianbing; Brotman, Yariv; Wen, Weiwei; Maeda, Hiroshi; Cheng, Yunjiang; Fernie, Alisdair R.
Afiliación
  • Zhu F; National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
  • Alseekh S; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany.
  • Koper K; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany.
  • Tong H; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria.
  • Nikoloski Z; Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
  • Naake T; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany.
  • Liu H; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria.
  • Yan J; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany.
  • Brotman Y; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany.
  • Wen W; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria.
  • Maeda H; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany.
  • Cheng Y; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany.
  • Fernie AR; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
Plant Cell ; 34(1): 557-578, 2022 01 20.
Article en En | MEDLINE | ID: mdl-34623442
ABSTRACT
Dark-induced senescence provokes profound metabolic shifts to recycle nutrients and to guarantee plant survival. To date, research on these processes has largely focused on characterizing mutants deficient in individual pathways. Here, we adopted a time-resolved genome-wide association-based approach to characterize dark-induced senescence by evaluating the photochemical efficiency and content of primary and lipid metabolites at the beginning, or after 3 or 6 days in darkness. We discovered six patterns of metabolic shifts and identified 215 associations with 81 candidate genes being involved in this process. Among these associations, we validated the roles of four genes associated with glycine, galactinol, threonine, and ornithine levels. We also demonstrated the function of threonine and galactinol catabolism during dark-induced senescence. Intriguingly, we determined that the association between tyrosine contents and TYROSINE AMINOTRANSFERASE 1 influences enzyme activity of the encoded protein and transcriptional activity of the gene under normal and dark conditions, respectively. Moreover, the single-nucleotide polymorphisms affecting the expression of THREONINE ALDOLASE 1 and the amino acid transporter gene AVT1B, respectively, only underlie the variation in threonine and glycine levels in the dark. Taken together, these results allow us to present a very detailed model of the metabolic aspects of dark-induced senescence, as well as the process itself.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genes de Plantas / Arabidopsis / Oscuridad / Senescencia de la Planta Tipo de estudio: Risk_factors_studies Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genes de Plantas / Arabidopsis / Oscuridad / Senescencia de la Planta Tipo de estudio: Risk_factors_studies Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2022 Tipo del documento: Article País de afiliación: China