Your browser doesn't support javascript.
loading
Distinct Roles of N-Terminal Fatty Acid Acylation of the Salinity-Sensor Protein SOS3.
Villalta, Irene; García, Elena; Hornero-Mendez, Dámaso; Carranco, Raúl; Tello, Carlos; Mendoza, Imelda; De Luca, Anna; Andrés, Zaida; Schumacher, Karin; Pardo, José M; Quintero, Francisco J.
Afiliación
  • Villalta I; Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Tours, France.
  • García E; Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain.
  • Hornero-Mendez D; Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Seville, Spain.
  • Carranco R; Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain.
  • Tello C; SelfDecode, Miami, FL, United States.
  • Mendoza I; Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain.
  • De Luca A; Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain.
  • Andrés Z; Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany.
  • Schumacher K; Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany.
  • Pardo JM; Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain.
  • Quintero FJ; Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain.
Front Plant Sci ; 12: 691124, 2021.
Article en En | MEDLINE | ID: mdl-34630451
The Salt-Overly-Sensitive (SOS) pathway controls the net uptake of sodium by roots and the xylematic transfer to shoots in vascular plants. SOS3/CBL4 is a core component of the SOS pathway that senses calcium signaling of salinity stress to activate and recruit the protein kinase SOS2/CIPK24 to the plasma membrane to trigger sodium efflux by the Na/H exchanger SOS1/NHX7. However, despite the well-established function of SOS3 at the plasma membrane, SOS3 displays a nucleo-cytoplasmic distribution whose physiological meaning is not understood. Here, we show that the N-terminal part of SOS3 encodes structural information for dual acylation with myristic and palmitic fatty acids, each of which commands a different location and function of SOS3. N-myristoylation at glycine-2 is essential for plasma membrane association and recruiting SOS2 to activate SOS1, whereas S-acylation at cysteine-3 redirects SOS3 toward the nucleus. Moreover, a poly-lysine track in positions 7-11 that is unique to SOS3 among other Arabidopsis CBLs appears to be essential for the correct positioning of the SOS2-SOS3 complex at the plasma membrane for the activation of SOS1. The nuclear-localized SOS3 protein had limited bearing on the salt tolerance of Arabidopsis. These results are evidence of a novel S-acylation dependent nuclear trafficking mechanism that contrasts with alternative subcellular targeting of other CBLs by S-acylation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Plant Sci Año: 2021 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Plant Sci Año: 2021 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Suiza