Your browser doesn't support javascript.
loading
Long short-term memory (LSTM) recurrent neural network for muscle activity detection.
Ghislieri, Marco; Cerone, Giacinto Luigi; Knaflitz, Marco; Agostini, Valentina.
Afiliación
  • Ghislieri M; Department of Electronics and Telecommunications, Politecnico Di Torino, 10129, Turin, Italy. marco.ghislieri@polito.it.
  • Cerone GL; PoliToBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy. marco.ghislieri@polito.it.
  • Knaflitz M; PoliToBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy.
  • Agostini V; Laboratory for Engineering of the Neuromuscular System (LISiN), Departement of Electronics and Telecommunications, Politecnico di Torino, 10129, Turin, Italy.
J Neuroeng Rehabil ; 18(1): 153, 2021 Oct 21.
Article en En | MEDLINE | ID: mdl-34674720
BACKGROUND: The accurate temporal analysis of muscle activation is of great interest in many research areas, spanning from neurorobotic systems to the assessment of altered locomotion patterns in orthopedic and neurological patients and the monitoring of their motor rehabilitation. The performance of the existing muscle activity detectors is strongly affected by both the SNR of the surface electromyography (sEMG) signals and the set of features used to detect the activation intervals. This work aims at introducing and validating a powerful approach to detect muscle activation intervals from sEMG signals, based on long short-term memory (LSTM) recurrent neural networks. METHODS: First, the applicability of the proposed LSTM-based muscle activity detector (LSTM-MAD) is studied through simulated sEMG signals, comparing the LSTM-MAD performance against other two widely used approaches, i.e., the standard approach based on Teager-Kaiser Energy Operator (TKEO) and the traditional approach, used in clinical gait analysis, based on a double-threshold statistical detector (Stat). Second, the effect of the Signal-to-Noise Ratio (SNR) on the performance of the LSTM-MAD is assessed considering simulated signals with nine different SNR values. Finally, the newly introduced approach is validated on real sEMG signals, acquired during both physiological and pathological gait. Electromyography recordings from a total of 20 subjects (8 healthy individuals, 6 orthopedic patients, and 6 neurological patients) were included in the analysis. RESULTS: The proposed algorithm overcomes the main limitations of the other tested approaches and it works directly on sEMG signals, without the need for background-noise and SNR estimation (as in Stat). Results demonstrate that LSTM-MAD outperforms the other approaches, revealing higher values of F1-score (F1-score > 0.91) and Jaccard similarity index (Jaccard > 0.85), and lower values of onset/offset bias (average absolute bias < 6 ms), both on simulated and real sEMG signals. Moreover, the advantages of using the LSTM-MAD algorithm are particularly evident for signals featuring a low to medium SNR. CONCLUSIONS: The presented approach LSTM-MAD revealed excellent performances against TKEO and Stat. The validation carried out both on simulated and real signals, considering normal as well as pathological motor function during locomotion, demonstrated that it can be considered a powerful tool in the accurate and effective recognition/distinction of muscle activity from background noise in sEMG signals.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Músculo Esquelético / Memoria a Corto Plazo Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Neuroeng Rehabil Asunto de la revista: ENGENHARIA BIOMEDICA / NEUROLOGIA / REABILITACAO Año: 2021 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Músculo Esquelético / Memoria a Corto Plazo Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Neuroeng Rehabil Asunto de la revista: ENGENHARIA BIOMEDICA / NEUROLOGIA / REABILITACAO Año: 2021 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido