Your browser doesn't support javascript.
loading
Exploration of Machine Learning and Statistical Techniques in Development of a Low-Cost Screening Method Featuring the Global Diet Quality Score for Detecting Prediabetes in Rural India.
Birk, Nick; Matsuzaki, Mika; Fung, Teresa T; Li, Yanping; Batis, Carolina; Stampfer, Meir J; Deitchler, Megan; Willett, Walter C; Fawzi, Wafaie W; Bromage, Sabri; Kinra, Sanjay; Bhupathiraju, Shilpa N; Lake, Erin.
Afiliación
  • Birk N; Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA.
  • Matsuzaki M; Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom.
  • Fung TT; Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA.
  • Li Y; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
  • Batis C; Nutrition Department, Simmons University, Boston, MA, USA.
  • Stampfer MJ; Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA.
  • Deitchler M; CONACYT-Health and Nutrition Research Center, National Institute of Public Health, Cuernavaca, Mexico.
  • Willett WC; Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA.
  • Fawzi WW; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.
  • Bromage S; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
  • Kinra S; Intake-Center for Dietary Assessment, FHI Solutions, Washington, DC, USA.
  • Bhupathiraju SN; Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA.
  • Lake E; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.
J Nutr ; 151(12 Suppl 2): 110S-118S, 2021 10 23.
Article en En | MEDLINE | ID: mdl-34689190
BACKGROUND: The prevalence of type 2 diabetes has increased substantially in India over the past 3 decades. Undiagnosed diabetes presents a public health challenge, especially in rural areas, where access to laboratory testing for diagnosis may not be readily available. OBJECTIVES: The present work explores the use of several machine learning and statistical methods in the development of a predictive tool to screen for prediabetes using survey data from an FFQ to compute the Global Diet Quality Score (GDQS). METHODS: The outcome variable prediabetes status (yes/no) used throughout this study was determined based upon a fasting blood glucose measurement ≥100 mg/dL. The algorithms utilized included the generalized linear model (GLM), random forest, least absolute shrinkage and selection operator (LASSO), elastic net (EN), and generalized linear mixed model (GLMM) with family unit as a (cluster) random (intercept) effect to account for intrafamily correlation. Model performance was assessed on held-out test data, and comparisons made with respect to area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. RESULTS: The GLMM, GLM, LASSO, and random forest modeling techniques each performed quite well (AUCs >0.70) and included the GDQS food groups and age, among other predictors. The fully adjusted GLMM, which included a random intercept for family unit, achieved slightly superior results (AUC of 0.72) in classifying the prediabetes outcome in these cluster-correlated data. CONCLUSIONS: The models presented in the current work show promise in identifying individuals at risk of developing diabetes, although further studies are necessary to assess other potentially impactful predictors, as well as the consistency and generalizability of model performance. In addition, future studies to examine the utility of the GDQS in screening for other noncommunicable diseases are recommended.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estado Prediabético / Modelos Estadísticos / Dieta / Aprendizaje Automático / Dieta Saludable Tipo de estudio: Diagnostic_studies / Health_economic_evaluation / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Adolescent / Adult / Aged / Aged80 / Female / Humans / Male / Middle aged País/Región como asunto: Asia Idioma: En Revista: J Nutr Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estado Prediabético / Modelos Estadísticos / Dieta / Aprendizaje Automático / Dieta Saludable Tipo de estudio: Diagnostic_studies / Health_economic_evaluation / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Adolescent / Adult / Aged / Aged80 / Female / Humans / Male / Middle aged País/Región como asunto: Asia Idioma: En Revista: J Nutr Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos