Your browser doesn't support javascript.
loading
Determining the photostability of avobenzone in sunscreen formulation models using ultrafast spectroscopy.
Holt, Emily L; Rodrigues, Natércia D N; Cebrián, Juan; Stavros, Vasilios G.
Afiliación
  • Holt EL; Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. v.stavros@warwick.ac.uk.
  • Rodrigues NDN; Molecular Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry, CV4 7AL, UK.
  • Cebrián J; Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. v.stavros@warwick.ac.uk.
  • Stavros VG; Lubrizol Life Science Beauty, Calle Isaac Peral, 17 Pol. Ind. Camí Ral, 08850 Barcelona, Spain.
Phys Chem Chem Phys ; 23(42): 24439-24448, 2021 Nov 03.
Article en En | MEDLINE | ID: mdl-34694312
Avobenzone is an ultraviolet (UV) filter that is often included in sunscreen formulations despite its lack of photostability. Its inclusion is necessary due to few existing alternatives for photoprotection in the UVA region (320-400 nm). To better understand and predict the photostability of avobenzone, ultrafast transient electronic absorption spectroscopy (TEAS) has been used to study the effects of solvent (including emollients), concentration and skin surface temperature on its excited-state relaxation mechanism, following photoexcitation with UVA radiation (∼350 nm). Subtle differences between the excited-state lifetimes were found between the systems, but the TEAS spectral features were qualitatively the same for all solution and temperature combinations. Alongside TEAS measurements, UV filter/emollient blends containing avobenzone were irradiated using simulated solar light and their degradation tracked using steady-state UV-visible spectroscopy. Sun protection factor (SPF) and UVA protection factor (UVA-PF) assessments were also carried out on representative oil phases (higher concentration blends), which could be used to formulate oil-in-water sunscreens. It was found that there was an apparent concentration dependence on the long-term photoprotective efficacy of these mixtures, which could be linked to the ultrafast photodynamics by the presence of a ground-state bleach offset. This combination of techniques shows potential for correlating long-term behaviours (minutes to hours) of avobenzone with its ultrafast photophysics (femtoseconds to nanoseconds), bridging the gap between fundamental photophysics/photochemistry and commercial sunscreen design.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Propiofenonas / Protectores Solares Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Propiofenonas / Protectores Solares Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article Pais de publicación: Reino Unido