Your browser doesn't support javascript.
loading
Deep-learning-based image registration for nano-resolution tomographic reconstruction.
Fu, Tianyu; Zhang, Kai; Wang, Yan; Li, Jizhou; Zhang, Jin; Yao, Chunxia; He, Qili; Wang, Shanfeng; Huang, Wanxia; Yuan, Qingxi; Pianetta, Piero; Liu, Yijin.
Afiliación
  • Fu T; Beijing Synchrotron Radiation Facility, X-ray Optics and Technology Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100043, People's Republic of China.
  • Zhang K; Beijing Synchrotron Radiation Facility, X-ray Optics and Technology Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100043, People's Republic of China.
  • Wang Y; Beijing Synchrotron Radiation Facility, X-ray Optics and Technology Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100043, People's Republic of China.
  • Li J; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Zhang J; Beijing Synchrotron Radiation Facility, X-ray Optics and Technology Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100043, People's Republic of China.
  • Yao C; Beijing Synchrotron Radiation Facility, X-ray Optics and Technology Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100043, People's Republic of China.
  • He Q; Beijing Synchrotron Radiation Facility, X-ray Optics and Technology Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100043, People's Republic of China.
  • Wang S; Beijing Synchrotron Radiation Facility, X-ray Optics and Technology Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100043, People's Republic of China.
  • Huang W; Beijing Synchrotron Radiation Facility, X-ray Optics and Technology Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100043, People's Republic of China.
  • Yuan Q; Beijing Synchrotron Radiation Facility, X-ray Optics and Technology Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100043, People's Republic of China.
  • Pianetta P; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Liu Y; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
J Synchrotron Radiat ; 28(Pt 6): 1909-1915, 2021 Nov 01.
Article en En | MEDLINE | ID: mdl-34738945
ABSTRACT
Nano-resolution full-field transmission X-ray microscopy has been successfully applied to a wide range of research fields thanks to its capability of non-destructively reconstructing the 3D structure with high resolution. Due to constraints in the practical implementations, the nano-tomography data is often associated with a random image jitter, resulting from imperfections in the hardware setup. Without a proper image registration process prior to the reconstruction, the quality of the result will be compromised. Here a deep-learning-based image jitter correction method is presented, which registers the projective images with high efficiency and accuracy, facilitating a high-quality tomographic reconstruction. This development is demonstrated and validated using synthetic and experimental datasets. The method is effective and readily applicable to a broad range of applications. Together with this paper, the source code is published and adoptions and improvements from our colleagues in this field are welcomed.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Synchrotron Radiat Asunto de la revista: RADIOLOGIA Año: 2021 Tipo del documento: Article Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Synchrotron Radiat Asunto de la revista: RADIOLOGIA Año: 2021 Tipo del documento: Article Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA