Your browser doesn't support javascript.
loading
Symmetry-aware reservoir computing.
Barbosa, Wendson A S; Griffith, Aaron; Rowlands, Graham E; Govia, Luke C G; Ribeill, Guilhem J; Nguyen, Minh-Hai; Ohki, Thomas A; Gauthier, Daniel J.
Afiliación
  • Barbosa WAS; Department of Physics, The Ohio State University, 191 W. Woodruff Ave., Columbus, Ohio 43210, USA.
  • Griffith A; Department of Physics, The Ohio State University, 191 W. Woodruff Ave., Columbus, Ohio 43210, USA.
  • Rowlands GE; Quantum Engineering and Computing, Raytheon BBN Technologies, Cambridge, Massachusetts 02138, USA.
  • Govia LCG; Quantum Engineering and Computing, Raytheon BBN Technologies, Cambridge, Massachusetts 02138, USA.
  • Ribeill GJ; Quantum Engineering and Computing, Raytheon BBN Technologies, Cambridge, Massachusetts 02138, USA.
  • Nguyen MH; Quantum Engineering and Computing, Raytheon BBN Technologies, Cambridge, Massachusetts 02138, USA.
  • Ohki TA; Quantum Engineering and Computing, Raytheon BBN Technologies, Cambridge, Massachusetts 02138, USA.
  • Gauthier DJ; Department of Physics, The Ohio State University, 191 W. Woodruff Ave., Columbus, Ohio 43210, USA.
Phys Rev E ; 104(4-2): 045307, 2021 Oct.
Article en En | MEDLINE | ID: mdl-34781436
ABSTRACT
We demonstrate that matching the symmetry properties of a reservoir computer (RC) to the data being processed dramatically increases its processing power. We apply our method to the parity task, a challenging benchmark problem that highlights inversion and permutation symmetries, and to a chaotic system inference task that presents an inversion symmetry rule. For the parity task, our symmetry-aware RC obtains zero error using an exponentially reduced neural network and training data, greatly speeding up the time to result and outperforming artificial neural networks. When both symmetries are respected, we find that the network size N necessary to obtain zero error for 50 different RC instances scales linearly with the parity-order n. Moreover, some symmetry-aware RC instances perform a zero error classification with only N=1 for n≤7. Furthermore, we show that a symmetry-aware RC only needs a training data set with size on the order of (n+n/2) to obtain such a performance, an exponential reduction in comparison to a regular RC which requires a training data set with size on the order of n2^{n} to contain all 2^{n} possible n-bit-long sequences. For the inference task, we show that a symmetry-aware RC presents a normalized root-mean-square error three orders-of-magnitude smaller than regular RCs. For both tasks, our RC approach respects the symmetries by adjusting only the input and the output layers, and not by problem-based modifications to the neural network. We anticipate that the generalizations of our procedure can be applied in information processing for problems with known symmetries.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA