Your browser doesn't support javascript.
loading
Dehydrocholesterol Reductase 24 (DHCR24): Medicinal Chemistry, Pharmacology and Novel Therapeutic Options.
Müller, Christoph; Hank, Emily; Giera, Martin; Bracher, Franz.
Afiliación
  • Müller C; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich, Germany.
  • Hank E; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich, Germany.
  • Giera M; Leiden University Medical Center, Center for Proteomics and Metabolomics, 2333ZA Leiden, The Netherlands.
  • Bracher F; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich, Germany.
Curr Med Chem ; 29(23): 4005-4025, 2022.
Article en En | MEDLINE | ID: mdl-34781860
ABSTRACT
During the last decade, the understanding of the biological functions of cholesterol biosynthesis intermediates has changed significantly. Particularly, the enzyme sterol dehydrocholesterol reductase 24 (DHCR24) has taken center stage as a potential drug target. Inhibition of DHCR24 leads to accumulation of the endogenous, biologically active metabolite cholesta-5,24-dien-3ß-ol (desmosterol). Desmosterol is an endogenous agonist of the liver X receptor (LXR). LXR is a master regulator of lipid metabolism and, as such, is involved in numerous pathophysiological processes such as inflammation, atherosclerosis, cancer, diabetes mellitus (DM), multiple sclerosis (MS), nonalcoholic steatohepatitis (NASH), and the progression of viral infections. Up to now, selective pharmacological targeting of LXR without activating the sterol-response element binding proteins (SREBP) and thereby boosting endogenous lipid biosynthesis has not been achieved. In turn, no selective LXR receptor agonists leveraging its beneficial activation have yet reached the clinic. Therefore, using potent and selective inhibitors of DHCR24 leading to an accumulation of endogenous desmosterol is a promising alternative strategy for the selective activation of LXR. Here we summarize the present landscape of novel lead structures for targeting DHCR24, covering steroidal enzyme inhibitors (e.g., 20,25-diazacholesterol, SH42) as well as nonsteroidal scaffolds (e.g., amiodarone, triparanol). Further, we explain the molecular mechanisms of DHCR24 inhibition/LXR activation, discuss possible therapeutic applications, and underpin why DHCR24 is an upcoming promising drug target.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH / Desmosterol Límite: Humans Idioma: En Revista: Curr Med Chem Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH / Desmosterol Límite: Humans Idioma: En Revista: Curr Med Chem Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Alemania