Your browser doesn't support javascript.
loading
Robotic-based ACTive somatoSENSory (Act.Sens) retraining on upper limb functions with chronic stroke survivors: study protocol for a pilot randomised controlled trial.
Sidarta, Ananda; Lim, Yu Chin; Kuah, Christopher Wee Keong; Loh, Yong Joo; Ang, Wei Tech.
Afiliación
  • Sidarta A; Rehabilitation Research Institute of Singapore, Nanyang Technological University, Singapore, Singapore. ananda.sidarta@ntu.edu.sg.
  • Lim YC; Rehabilitation Research Institute of Singapore, Nanyang Technological University, Singapore, Singapore.
  • Kuah CWK; Rehabilitation Research Institute of Singapore, Nanyang Technological University, Singapore, Singapore.
  • Loh YJ; Centre for Advanced Rehabilitation Therapeutics (CART), Tan Tock Seng Hospital, Singapore, Singapore.
  • Ang WT; Rehabilitation Research Institute of Singapore, Nanyang Technological University, Singapore, Singapore.
Pilot Feasibility Stud ; 7(1): 207, 2021 Nov 15.
Article en En | MEDLINE | ID: mdl-34782024
BACKGROUND: Prior studies have established that senses of the limb position in space (proprioception and kinaesthesia) are important for motor control and learning. Although nearly one-half of stroke patients have impairment in the ability to sense their movements, somatosensory retraining focusing on proprioception and kinaesthesia is often overlooked. Interventions that simultaneously target motor and somatosensory components are thought to be useful for relearning somatosensory functions while increasing mobility of the affected limb. For over a decade, robotic technology has been incorporated in stroke rehabilitation for more controlled therapy intensity, duration, and frequency. This pilot randomised controlled trial introduces a compact robotic-based upper-limb reaching task that retrains proprioception and kinaesthesia concurrently. METHODS: Thirty first-ever chronic stroke survivors (> 6-month post-stroke) will be randomly assigned to either a treatment or a control group. Over a 5-week period, the treatment group will receive 15 training sessions for about an hour per session. Robot-generated haptic guidance will be provided along the movement path as somatosensory cues while moving. Audio-visual feedback will appear following every successful movement as a reward. For the same duration, the control group will complete similar robotic training but without the vision occluded and robot-generated cues. Baseline, post-day 1, and post-day 30 assessments will be performed, where the last two sessions will be conducted after the last training session. Robotic-based performance indices and clinical assessments of upper limb functions after stroke will be used to acquire primary and secondary outcome measures respectively. This work will provide insights into the feasibility of such robot-assisted training clinically. DISCUSSION: The current work presents a study protocol to retrain upper-limb somatosensory and motor functions using robot-based rehabilitation for community-dwelling stroke survivors. The training promotes active use of the affected arm while at the same time enhances somatosensory input through augmented feedback. The outcomes of this study will provide preliminary data and help inform the clinicians on the feasibility and practicality of the proposed exercise. TRIAL REGISTRATION: ClinicalTrials.gov NCT04490655 . Registered 29 July 2020.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Clinical_trials / Guideline Idioma: En Revista: Pilot Feasibility Stud Año: 2021 Tipo del documento: Article País de afiliación: Singapur Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Clinical_trials / Guideline Idioma: En Revista: Pilot Feasibility Stud Año: 2021 Tipo del documento: Article País de afiliación: Singapur Pais de publicación: Reino Unido