Your browser doesn't support javascript.
loading
Atomic structures of twin boundaries in CoO.
Xing, Wandong; Zhang, Yang; Cui, Jizhe; Liang, Shiyou; Meng, Fanyan; Zhu, Jing; Yu, Rong.
Afiliación
  • Xing W; National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China. ryu@tsinghua.edu.cn.
  • Zhang Y; National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China. ryu@tsinghua.edu.cn.
  • Cui J; National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China. ryu@tsinghua.edu.cn.
  • Liang S; National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China. ryu@tsinghua.edu.cn.
  • Meng F; Department of Physics, University of Science and Technology Beijing, Beijing 100083, China. meng7707@sas.ustb.edu.cn.
  • Zhu J; National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China. ryu@tsinghua.edu.cn.
  • Yu R; National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China. ryu@tsinghua.edu.cn.
Phys Chem Chem Phys ; 23(45): 25590-25596, 2021 Nov 24.
Article en En | MEDLINE | ID: mdl-34783799
The twinning plane of crystals with a face-centered-cubic (FCC) structure is usually the (111) plane, as found in FCC metals and oxides with FCC sublattices of oxygen, like rock-salt-type NiO and spinel-type Fe3O4. Surprisingly, we found in this work that the twinning plane of rock-salt-type CoO is the (112) plane, although Co is adjacent to Ni in the periodic table. The atomic and electronic structures of the CoO(112) twin boundary with in-plane shift vector 1/2[111] have been studied combining aberration-corrected scanning transmission electron microscopy (STEM), electron-energy-loss spectroscopy (EELS), and density functional theory (DFT) calculations. It was found that the atoms at the twin boundary have nominal oxidation states, and the twin boundary remains insulating and antiferromagnetically coupled. Importantly, through the electronic structures and the crystal orbital Hamilton population (COHP) analyses, the (112) twin boundary is found to be more stable than the (111) twin boundary.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido