Your browser doesn't support javascript.
loading
Vitamin A Deficiency Exacerbates Gut Microbiota Dysbiosis and Cognitive Deficits in Amyloid Precursor Protein/Presenilin 1 Transgenic Mice.
Chen, Bo-Wen; Zhang, Kai-Wen; Chen, Si-Jia; Yang, Chun; Li, Peng-Gao.
Afiliación
  • Chen BW; School of Public Health, Capital Medical University, Beijing, China.
  • Zhang KW; Beijing Key Laboratory of Environmental Toxicology, Beijing, China.
  • Chen SJ; Beijing Key Laboratory of Clinical Epidemiology, Beijing, China.
  • Yang C; School of Public Health, Capital Medical University, Beijing, China.
  • Li PG; Beijing Key Laboratory of Environmental Toxicology, Beijing, China.
Front Aging Neurosci ; 13: 753351, 2021.
Article en En | MEDLINE | ID: mdl-34790112
ABSTRACT
Vitamin A deficiency (VAD) plays an essential role in the pathogenesis of Alzheimer's disease (AD). However, the specific mechanism by which VAD aggravates cognitive impairment is still unknown. At the intersection of microbiology and neuroscience, the gut-brain axis is undoubtedly contributing to the formation and function of neurological systems, but most of the previous studies have ignored the influence of gut microbiota on the cognitive function in VAD. Therefore, we assessed the effect of VAD on AD pathology and the decline of cognitive function in AD model mice and determined the role played by the intestinal microbiota in the process. Twenty 8-week-old male C57BL/6J amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice were randomly assigned to either a vitamin A normal (VAN) or VAD diet for 45 weeks. Our results show that VAD aggravated the behavioral learning and memory deficits, reduced the retinol concentration in the liver and the serum, decreased the transcription of vitamin A (VA)-related receptors and VA-related enzymes in the cortex, increased amyloidpeptides (Aß40 and Aß42) in the brain and gut, upregulate the translation of beta-site APP-cleaving enzyme 1 (BACE1) and phosphorylated Tau in the cortex, and downregulate the expression of brain-derived neurotrophic factor (BDNF) and γ-aminobutyric acid (GABA) receptors in the cortex. In addition, VAD altered the composition and functionality of the fecal microbiota as exemplified by a decreased abundance of Lactobacillus and significantly different α- and ß-diversity. Of note, the functional metagenomic prediction (PICRUSt analysis) indicated that GABAergic synapse and retinol metabolism decreased remarkably after VAD intervention, which was in line with the decreased expression of GABA receptors and the decreased liver and serum retinol. In summary, the present study provided valuable facts that VAD exacerbated the morphological, histopathological, molecular biological, microbiological, and behavioral impairment in the APP/PS1 transgenic mice, and the intestinal microbiota may play a key mediator role in this mechanism.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Aging Neurosci Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Aging Neurosci Año: 2021 Tipo del documento: Article País de afiliación: China