Your browser doesn't support javascript.
loading
Maturation- and degeneration-dependent articular cartilage metabolism via optical redox ratio imaging.
Walsh, Shannon K; Soni, Rikin; Arendt, Lisa M; Skala, Melissa C; Henak, Corinne R.
Afiliación
  • Walsh SK; Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Soni R; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Arendt LM; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Skala MC; Morgridge Institute for Research, Madison, Wisconsin, USA.
  • Henak CR; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.
J Orthop Res ; 40(8): 1735-1743, 2022 08.
Article en En | MEDLINE | ID: mdl-34792214
ABSTRACT
From the two metabolic processes in healthy cartilage, glycolysis has been associated with proliferation and oxidative phosphorylation (oxphos) with matrix synthesis. Recently, metabolic dysregulation was significantly correlated with cartilage degradation and osteoarthritis progression. While these findings suggest maturation predisposes cartilage to metabolic instability with consequences for tissue maintenance, these links have not been shown. Therefore, this study sought to address three hypotheses (a) chondrocytes exhibit differential metabolic activity between immaturity (0-4 months), adolescence (5-18 months), and maturity (>18 months); (b) perturbation of metabolic activity has consequences on expression of genes pertinent to cartilage tissue maintenance; and (c) severity of cartilage damage is positively correlated with glycolysis and oxphos activity as well as optical redox ratio in postadolescent cartilage. Porcine femoral cartilage samples from pigs (3 days to 6 years) underwent optical redox ratio imaging, which measures autofluorescence of NAD(P)H and FAD. Gene expression analysis and histological scoring was conducted for comparison against imaging metrics. NAD(P)H and FAD autofluorescence both demonstrated increasing intensity with age, while optical redox ratio was lowest in adolescent samples compared to immature or mature samples. Inhibition of glycolysis suppressed expression of Col2, Col1, ADAMTS4, and ADAMTS5, while oxphos inhibition had no effect. FAD fluorescence and optical redox ratio were positively correlated with histological degeneration. This study demonstrates maturation- and degeneration-dependent metabolic activity in cartilage and explores the consequences of this differential activity on gene expression. This study aids our basic understanding of cartilage biology and highlights opportunity for potential diagnostic applications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cartílago Articular Límite: Animals Idioma: En Revista: J Orthop Res Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cartílago Articular Límite: Animals Idioma: En Revista: J Orthop Res Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos