Your browser doesn't support javascript.
loading
RDFNet: A Fast Caries Detection Method Incorporating Transformer Mechanism.
Jiang, Hao; Zhang, Peiliang; Che, Chao; Jin, Bo.
Afiliación
  • Jiang H; Key Laboratory of Advanced Design and Intelligent Computing (Dalian University), Ministry of Education, Dalian 116622, China.
  • Zhang P; Key Laboratory of Advanced Design and Intelligent Computing (Dalian University), Ministry of Education, Dalian 116622, China.
  • Che C; Key Laboratory of Advanced Design and Intelligent Computing (Dalian University), Ministry of Education, Dalian 116622, China.
  • Jin B; School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian 116024, China.
Comput Math Methods Med ; 2021: 9773917, 2021.
Article en En | MEDLINE | ID: mdl-34804198
Dental caries is a prevalent disease of the human oral cavity. Given the lack of research on digital images for caries detection, we construct a caries detection dataset based on the caries images annotated by professional dentists and propose RDFNet, a fast caries detection method for the requirement of detecting caries on portable devices. The method incorporates the transformer mechanism in the backbone network for feature extraction, which improves the accuracy of caries detection and uses the FReLU activation function for activating visual-spatial information to improve the speed of caries detection. The experimental results on the image dataset constructed in this study show that the accuracy and speed of the method for caries detection are improved compared with the existing methods, achieving a good balance in accuracy and speed of caries detection, which can be applied to smart portable devices to facilitate human dental health management.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Caries Dental / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Comput Math Methods Med Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Caries Dental / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Comput Math Methods Med Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos