Your browser doesn't support javascript.
loading
Microbiological Quality Assessment of Chicken Thigh Fillets Using Spectroscopic Sensors and Multivariate Data Analysis.
Spyrelli, Evgenia D; Papachristou, Christina K; Nychas, George-John E; Panagou, Efstathios Z.
Afiliación
  • Spyrelli ED; Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
  • Papachristou CK; Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
  • Nychas GE; Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
  • Panagou EZ; Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
Foods ; 10(11)2021 Nov 07.
Article en En | MEDLINE | ID: mdl-34829004
Fourier transform infrared spectroscopy (FT-IR) and multispectral imaging (MSI) were evaluated for the prediction of the microbiological quality of poultry meat via regression and classification models. Chicken thigh fillets (n = 402) were subjected to spoilage experiments at eight isothermal and two dynamic temperature profiles. Samples were analyzed microbiologically (total viable counts (TVCs) and Pseudomonas spp.), while simultaneously MSI and FT-IR spectra were acquired. The organoleptic quality of the samples was also evaluated by a sensory panel, establishing a TVC spoilage threshold at 6.99 log CFU/cm2. Partial least squares regression (PLS-R) models were employed in the assessment of TVCs and Pseudomonas spp. counts on chicken's surface. Furthermore, classification models (linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector machines (SVMs), and quadratic support vector machines (QSVMs)) were developed to discriminate the samples in two quality classes (fresh vs. spoiled). PLS-R models developed on MSI data predicted TVCs and Pseudomonas spp. counts satisfactorily, with root mean squared error (RMSE) values of 0.987 and 1.215 log CFU/cm2, respectively. SVM model coupled to MSI data exhibited the highest performance with an overall accuracy of 94.4%, while in the case of FT-IR, improved classification was obtained with the QDA model (overall accuracy 71.4%). These results confirm the efficacy of MSI and FT-IR as rapid methods to assess the quality in poultry products.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Foods Año: 2021 Tipo del documento: Article País de afiliación: Grecia Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Foods Año: 2021 Tipo del documento: Article País de afiliación: Grecia Pais de publicación: Suiza