Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) by Pseudomonas aeruginosa and Their Activity against Pathogenic Microbes and Common House Mosquito, Culex pipiens.
Materials (Basel)
; 14(22)2021 Nov 18.
Article
en En
| MEDLINE
| ID: mdl-34832382
The synthesis of nanoparticles by green approaches is gaining unique importance due to its low cost, biocompatibility, high productivity, and purity, and being environmentally friendly. Herein, biomass filtrate of Pseudomonas aeruginosa isolated from mangrove rhizosphere sediment was used for the biosynthesis of zinc oxide nanoparticles (ZnO-NPs). The bacterial isolate was identified based on morphological, physiological, and 16S rRNA. The bio-fabricated ZnO-NPs were characterized using color change, UV-visible spectroscopy, FT-IR, TEM, and XRD analyses. In the current study, spherical and crystalline nature ZnO-NPs were successfully formed at a maximum SPR (surface plasmon resonance) of 380 nm. The bioactivities of fabricated ZnO-NPs including antibacterial, anti-candida, and larvicidal efficacy were investigated. Data analysis showed that these bioactivities were concentration-dependent. The green-synthesized ZnO-NPs exhibited high efficacy against pathogenic Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and unicellular fungi (Candida albicans) with inhibition zones of (12.33 ± 0.9 and 29.3 ± 0.3 mm), (19.3 ± 0.3 and 11.7 ± 0.3 mm), and (22.3 ± 0.3 mm), respectively, at 200 ppm. The MIC value was detected as 50 ppm for E. coli, B. subtilis, and C. albicans, and 200 ppm for S. aureus and P. aeruginosa with zones of inhibition ranging between 11.7 ± 0.3-14.6 ± 0.6 mm. Moreover, the biosynthesized ZnO-NPs showed high mortality for Culex pipiens with percentages of 100 ± 0.0% at 200 ppm after 24 h as compared with zinc acetate (44.3 ± 3.3%) at the same concentration and the same time.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Materials (Basel)
Año:
2021
Tipo del documento:
Article
País de afiliación:
Egipto
Pais de publicación:
Suiza