Your browser doesn't support javascript.
loading
Core-satellite assembly of gold nanoshells on solid gold nanoparticles for a color coding plasmonic nanosensor.
Le, Nguyen H; Cathcart, Nicole; Kitaev, Vladimir; Chen, Jennifer I L.
Afiliación
  • Le NH; Department of Chemistry, York University, 4700 Keele Street Toronto, Ontario, M3J 1P3, Canada. jilchen@yorku.ca.
  • Cathcart N; Department of Chemistry, York University, 4700 Keele Street Toronto, Ontario, M3J 1P3, Canada. jilchen@yorku.ca.
  • Kitaev V; Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario N2L 3C5, Canada.
  • Chen JIL; Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario N2L 3C5, Canada.
Analyst ; 147(1): 155-164, 2021 Dec 20.
Article en En | MEDLINE | ID: mdl-34860213
ABSTRACT
We present core-satellite assemblies comprising a solid gold nanoparticle as the core and hollow decahedral gold nanoshells as satellites for tuning the optical properties of the plasmonic structure for sensing. The core-satellite assemblies were fabricated on a substrate via the layer-by-layer assembly of nanoparticles linked by DNA. We used finite-difference time-domain simulations to help guide the geometrical design, and characterized the optical properties and morphology of the solid-shell nanoparticle assemblies using darkfield microscopy, single-nanostructure spectroscopy, and scanning electron microscopy. Plasmon coupling yielded resonant peaks at longer wavelengths in the red to near-infrared range for solid-shell assemblies compared with solid-solid nanoparticle assemblies. We examined sensing with the solid-shell assemblies using adenosine triphosphate (ATP) as a model target and ATP-aptamer as the linker. Binding of ATP induced disassembly and led to a decrease in the scattering intensity and a color change from red to green. The new morphology of the core-satellite assembly enabled plasmonic color-coding of multiplexed sensors. We demonstrate this potential by fabricating two types of assemblies using DNA linkers that target different molecules - ATP and a model nucleic acid. Our work expands the capability of chip-based plasmonic nanoparticle assemblies for the analysis of multiple, different types of biomolecules in small sample sizes including the microenvironment and single cells.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas del Metal / Nanocáscaras Idioma: En Revista: Analyst Año: 2021 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas del Metal / Nanocáscaras Idioma: En Revista: Analyst Año: 2021 Tipo del documento: Article País de afiliación: Canadá