Your browser doesn't support javascript.
loading
Improving the accuracy of stroke clinical coding with open-source software and natural language processing.
Bacchi, Stephen; Gluck, Sam; Koblar, Simon; Jannes, Jim; Kleinig, Timothy.
Afiliación
  • Bacchi S; Royal Adelaide Hospital, Adelaide SA 5000, Australia; University of Adelaide, Adelaide SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia. Electronic address: stephen.bacchi@sa.gov.au.
  • Gluck S; University of Adelaide, Adelaide SA 5005, Australia; Lyell McEwin Hospital, Adelaide SA 5112, Australia.
  • Koblar S; Royal Adelaide Hospital, Adelaide SA 5000, Australia; University of Adelaide, Adelaide SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia.
  • Jannes J; Royal Adelaide Hospital, Adelaide SA 5000, Australia; University of Adelaide, Adelaide SA 5005, Australia.
  • Kleinig T; Royal Adelaide Hospital, Adelaide SA 5000, Australia; University of Adelaide, Adelaide SA 5005, Australia.
J Clin Neurosci ; 94: 233-236, 2021 Dec.
Article en En | MEDLINE | ID: mdl-34863443
Clinical coding is an important task, which is required for accurate activity-based funding. Natural language processing may be able to assist with improving the efficiency and accuracy of clinical coding. The aims of this study were to explore the feasibility of using natural language processing for stroke hospital admissions, employed with open-source software libraries, to aid in the identification of potentially misclassified (1) category of Adjacent Diagnosis Related Groups (ADRG), (2) the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, Australian Modification (ICD-10-AM) diagnoses, and (3) Diagnosis Related Groups (DRG). Data was collected for consecutive individuals admitted to the Royal Adelaide Hospital Stroke Unit over a five-month period for misclassification identification analysis. 152 admissions were included in the study. Using free-text discharge summaries, a random forest classifier correctly identified two cases classified as B70 ("Stroke and Other Cerebrovascular Disorders") that should be classified as B02 (having received endovascular thrombectomy). A regular expression-based analysis correctly identified 33 cases in which ataxia was present but was not coded. Two cases were identified that should have been classified as B70D, rather than B70A/B/C, based on transfer to another centre within five days of admission. A variety of techniques may be useful to help identify misclassifications in ADRG, ICD-10-AM and DRG codes. Such techniques can be implemented with open-source software libraries, and may have significant financial implications. Future studies may seek to apply open-source software libraries to the identification of misclassifications of all ICD-10-AM diagnoses in stroke patients.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Accidente Cerebrovascular / Codificación Clínica Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans País/Región como asunto: Oceania Idioma: En Revista: J Clin Neurosci Asunto de la revista: NEUROLOGIA Año: 2021 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Accidente Cerebrovascular / Codificación Clínica Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans País/Región como asunto: Oceania Idioma: En Revista: J Clin Neurosci Asunto de la revista: NEUROLOGIA Año: 2021 Tipo del documento: Article Pais de publicación: Reino Unido