Your browser doesn't support javascript.
loading
Automated Segmentation of Kidney Cortex and Medulla in CT Images: A Multisite Evaluation Study.
Korfiatis, Panagiotis; Denic, Aleksandar; Edwards, Marie E; Gregory, Adriana V; Wright, Darryl E; Mullan, Aidan; Augustine, Joshua; Rule, Andrew D; Kline, Timothy L.
Afiliación
  • Korfiatis P; Department of Radiology, Mayo Clinic, Rochester, Minnesota.
  • Denic A; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
  • Edwards ME; Department of Radiology, Mayo Clinic, Rochester, Minnesota.
  • Gregory AV; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
  • Wright DE; Department of Radiology, Mayo Clinic, Rochester, Minnesota.
  • Mullan A; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
  • Augustine J; Department of Nephrology, Cleveland Clinic, Cleveland, Ohio.
  • Rule AD; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
  • Kline TL; Department of Radiology, Mayo Clinic, Rochester, Minnesota.
J Am Soc Nephrol ; 33(2): 420-430, 2022 02.
Article en En | MEDLINE | ID: mdl-34876489
BACKGROUND: In kidney transplantation, a contrast CT scan is obtained in the donor candidate to detect subclinical pathology in the kidney. Recent work from the Aging Kidney Anatomy study has characterized kidney, cortex, and medulla volumes using a manual image-processing tool. However, this technique is time consuming and impractical for clinical care, and thus, these measurements are not obtained during donor evaluations. This study proposes a fully automated segmentation approach for measuring kidney, cortex, and medulla volumes. METHODS: A total of 1930 contrast-enhanced CT exams with reference standard manual segmentations from one institution were used to develop the algorithm. A convolutional neural network model was trained (n=1238) and validated (n=306), and then evaluated in a hold-out test set of reference standard segmentations (n=386). After the initial evaluation, the algorithm was further tested on datasets originating from two external sites (n=1226). RESULTS: The automated model was found to perform on par with manual segmentation, with errors similar to interobserver variability with manual segmentation. Compared with the reference standard, the automated approach achieved a Dice similarity metric of 0.94 (right cortex), 0.90 (right medulla), 0.94 (left cortex), and 0.90 (left medulla) in the test set. Similar performance was observed when the algorithm was applied on the two external datasets. CONCLUSIONS: A fully automated approach for measuring cortex and medullary volumes in CT images of the kidneys has been established. This method may prove useful for a wide range of clinical applications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Imagen Asistido por Computador / Tomografía Computarizada por Rayos X / Corteza Renal / Médula Renal Tipo de estudio: Clinical_trials / Evaluation_studies / Guideline Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: J Am Soc Nephrol Asunto de la revista: NEFROLOGIA Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Imagen Asistido por Computador / Tomografía Computarizada por Rayos X / Corteza Renal / Médula Renal Tipo de estudio: Clinical_trials / Evaluation_studies / Guideline Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: J Am Soc Nephrol Asunto de la revista: NEFROLOGIA Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos