Your browser doesn't support javascript.
loading
Supervised learning with word embeddings derived from PubMed captures latent knowledge about protein kinases and cancer.
Ravanmehr, Vida; Blau, Hannah; Cappelletti, Luca; Fontana, Tommaso; Carmody, Leigh; Coleman, Ben; George, Joshy; Reese, Justin; Joachimiak, Marcin; Bocci, Giovanni; Hansen, Peter; Bult, Carol; Rueter, Jens; Casiraghi, Elena; Valentini, Giorgio; Mungall, Christopher; Oprea, Tudor I; Robinson, Peter N.
Afiliación
  • Ravanmehr V; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
  • Blau H; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
  • Cappelletti L; AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Italy.
  • Fontana T; AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Italy.
  • Carmody L; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
  • Coleman B; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
  • George J; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
  • Reese J; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA.
  • Joachimiak M; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA.
  • Bocci G; Department of Internal Medicine and UNM Comprehensive Cancer Center, UNM School of, Medicine, Albuquerque, NM 87102, USA.
  • Hansen P; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
  • Bult C; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA.
  • Rueter J; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA.
  • Casiraghi E; AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Italy.
  • Valentini G; AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Italy.
  • Mungall C; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA.
  • Oprea TI; Department of Internal Medicine and UNM Comprehensive Cancer Center, UNM School of, Medicine, Albuquerque, NM 87102, USA.
  • Robinson PN; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
NAR Genom Bioinform ; 3(4): lqab113, 2021 Dec.
Article en En | MEDLINE | ID: mdl-34888523
Inhibiting protein kinases (PKs) that cause cancers has been an important topic in cancer therapy for years. So far, almost 8% of >530 PKs have been targeted by FDA-approved medications, and around 150 protein kinase inhibitors (PKIs) have been tested in clinical trials. We present an approach based on natural language processing and machine learning to investigate the relations between PKs and cancers, predicting PKs whose inhibition would be efficacious to treat a certain cancer. Our approach represents PKs and cancers as semantically meaningful 100-dimensional vectors based on word and concept neighborhoods in PubMed abstracts. We use information about phase I-IV trials in ClinicalTrials.gov to construct a training set for random forest classification. Our results with historical data show that associations between PKs and specific cancers can be predicted years in advance with good accuracy. Our tool can be used to predict the relevance of inhibiting PKs for specific cancers and to support the design of well-focused clinical trials to discover novel PKIs for cancer therapy.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: NAR Genom Bioinform Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: NAR Genom Bioinform Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido