Your browser doesn't support javascript.
loading
Synergy and Complementarity between Focused Machine Learning and Physics-Based Simulation in Affinity Prediction.
Cleves, Ann E; Johnson, Stephen R; Jain, Ajay N.
Afiliación
  • Cleves AE; Applied Science, BioPharmics LLC, Santa Rosa, California 95404, United States.
  • Johnson SR; Computer-Assisted Drug-Design, Bristol-Myers Squibb Company, Princeton, New Jersey 08648, United States.
  • Jain AN; Research and Development, BioPharmics LLC, Santa Rosa, California 95404, United States.
J Chem Inf Model ; 61(12): 5948-5966, 2021 12 27.
Article en En | MEDLINE | ID: mdl-34890185
We present results on the extent to which physics-based simulation (exemplified by FEP+) and focused machine learning (exemplified by QuanSA) are complementary for ligand affinity prediction. For both methods, predictions of activity for LFA-1 inhibitors from a medicinal chemistry lead optimization project were accurate within the applicable domain of each approach. A hybrid model that combined predictions by both approaches by simple averaging performed better than either method, with respect to both ranking and absolute pKi values. Two publicly available FEP+ benchmarks, covering 16 diverse biological targets, were used to test the generality of the synergy. By identifying training data specifically focused on relevant ligands, accurate QuanSA models were derived using ligand activity data known at the time of the original series publications. Results across the 16 benchmark targets demonstrated significant improvements both for ranking and for absolute pKi values using hybrid predictions that combined the FEP+ and QuanSA predicted affinity values. The results argue for a combined approach for affinity prediction that makes use of physics-driven methods as well as those driven by machine learning, each applied carefully on appropriate compounds, with hybrid prediction strategies being employed where possible.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Física / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Física / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos