Your browser doesn't support javascript.
loading
NMTF-DTI: A Nonnegative Matrix Tri-factorization Approach With Multiple Kernel Fusion for Drug-Target Interaction Prediction.
Article en En | MEDLINE | ID: mdl-34914594
Prediction of drug-target interactions (DTIs) plays a significant role in drug development and drug discovery. Although this task requires a large investment in terms of time and cost, especially when it is performed experimentally, the results are not necessarily significant. Computational DTI prediction is a shortcut to reduce the risks of experimental methods. In this study, we propose an effective approach of nonnegative matrix tri-factorization, referred to as NMTF-DTI, to predict the interaction scores between drugs and targets. NMTF-DTI utilizes multiple kernels (similarity measures) for drugs and targets and Laplacian regularization to boost the prediction performance. The performance of NMTF-DTI is evaluated via cross-validation and is compared with existing DTI prediction methods in terms of the area under the receiver operating characteristic (ROC) curve (AUC) and the area under the precision and recall curve (AUPR). We evaluate our method on four gold standard datasets, comparing to other state-of-the-art methods. Cross-validation and a separate, manually created dataset are used to set parameters. The results show that NMTF-DTI outperforms other competing methods. Moreover, the results of a case study also confirm the superiority of NMTF-DTI.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Desarrollo de Medicamentos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: ACM Trans Comput Biol Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Desarrollo de Medicamentos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: ACM Trans Comput Biol Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos