Your browser doesn't support javascript.
loading
Health Care Analytics With Time-Invariant and Time-Variant Feature Importance to Predict Hospital-Acquired Acute Kidney Injury: Observational Longitudinal Study.
Chua, Horng-Ruey; Zheng, Kaiping; Vathsala, Anantharaman; Ngiam, Kee-Yuan; Yap, Hui-Kim; Lu, Liangjian; Tiong, Ho-Yee; Mukhopadhyay, Amartya; MacLaren, Graeme; Lim, Shir-Lynn; Akalya, K; Ooi, Beng-Chin.
Afiliación
  • Chua HR; Division of Nephrology, Department of Medicine, National University Hospital, Singapore, Singapore.
  • Zheng K; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
  • Vathsala A; Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore.
  • Ngiam KY; Division of Nephrology, Department of Medicine, National University Hospital, Singapore, Singapore.
  • Yap HK; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
  • Lu L; Division of Endocrine Surgery, Department of Surgery, National University Hospital, Singapore, Singapore.
  • Tiong HY; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
  • Mukhopadhyay A; Division of Paediatric Nephrology, Department of Paediatrics, National University Children's Medical Institute, Singapore, Singapore.
  • MacLaren G; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
  • Lim SL; Division of Paediatric Nephrology, Department of Paediatrics, National University Children's Medical Institute, Singapore, Singapore.
  • Akalya K; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
  • Ooi BC; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
J Med Internet Res ; 23(12): e30805, 2021 12 24.
Article en En | MEDLINE | ID: mdl-34951595
ABSTRACT

BACKGROUND:

Acute kidney injury (AKI) develops in 4% of hospitalized patients and is a marker of clinical deterioration and nephrotoxicity. AKI onset is highly variable in hospitals, which makes it difficult to time biomarker assessment in all patients for preemptive care.

OBJECTIVE:

The study sought to apply machine learning techniques to electronic health records and predict hospital-acquired AKI by a 48-hour lead time, with the aim to create an AKI surveillance algorithm that is deployable in real time.

METHODS:

The data were sourced from 20,732 case admissions in 16,288 patients over 1 year in our institution. We enhanced the bidirectional recurrent neural network model with a novel time-invariant and time-variant aggregated module to capture important clinical features temporal to AKI in every patient. Time-series features included laboratory parameters that preceded a 48-hour prediction window before AKI onset; the latter's corresponding reference was the final in-hospital serum creatinine performed in case admissions without AKI episodes.

RESULTS:

The cohort was of mean age 53 (SD 25) years, of whom 29%, 12%, 12%, and 53% had diabetes, ischemic heart disease, cancers, and baseline eGFR <90 mL/min/1.73 m2, respectively. There were 911 AKI episodes in 869 patients. We derived and validated an algorithm in the testing dataset with an AUROC of 0.81 (0.78-0.85) for predicting AKI. At a 15% prediction threshold, our model generated 699 AKI alerts with 2 false positives for every true AKI and predicted 26% of AKIs. A lowered 5% prediction threshold improved the recall to 60% but generated 3746 AKI alerts with 6 false positives for every true AKI. Representative interpretation results produced by our model alluded to the top-ranked features that predicted AKI that could be categorized in association with sepsis, acute coronary syndrome, nephrotoxicity, or multiorgan injury, specific to every case at risk.

CONCLUSIONS:

We generated an accurate algorithm from electronic health records through machine learning that predicted AKI by a lead time of at least 48 hours. The prediction threshold could be adjusted during deployment to optimize recall and minimize alert fatigue, while its precision could potentially be augmented by targeted AKI biomarker assessment in the high-risk cohort identified.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Lesión Renal Aguda Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans / Middle aged Idioma: En Revista: J Med Internet Res Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Singapur

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Lesión Renal Aguda Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans / Middle aged Idioma: En Revista: J Med Internet Res Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Singapur
...