Your browser doesn't support javascript.
loading
The underappreciated role of monocarbonyl-dicarbonyl interconversion in secondary organic aerosol formation during photochemical oxidation of m-xylene.
Chen, Jiangyao; Li, Jiani; Chen, Xiaoyan; Gu, Jianwei; An, Taicheng.
Afiliación
  • Chen J; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China;
  • Li J; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
  • Chen X; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
  • Gu J; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China;
  • An T; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China;
Sci Total Environ ; 814: 152575, 2022 Mar 25.
Article en En | MEDLINE | ID: mdl-34963606
ABSTRACT
Photochemical oxidation (including photolysis and OH-initiated reactions) of aromatic hydrocarbon produces carbonyls, which are involved in the formation of secondary organic aerosols (SOA). However, the mechanism of this process remains incompletely understood. Herein, the monocarbonyl-dicarbonyl interconversion and its role in SOA production were investigated via a series of photochemical oxidation experiments for m-xylene and representative carbonyls. The results showed that SOA mass concentration peaked at 113.5 ± 3.5 µg m-3 after m-xylene oxidation for 60 min and then decreased. Change in the main oxidation products from dicarbonyl (e.g., glyoxal, methylglyoxal) to monocarbonyl (e.g., formaldehyde) was responsible for this decrease. The photolysis of methylglyoxal or glyoxal produced formaldehyde, favoring SOA formation, while photopolymerization of formaldehyde to glyoxal decreased SOA production. The presence of ·OH altered the balance of photolysis interconversion, resulting in greater production of formaldehyde and SOA from glyoxal than methylglyoxal. Both photolysis and OH-initiated transformations of glyoxal to formaldehyde were suppressed by methylglyoxal, while glyoxal accelerated the reaction of ·OH with methylglyoxal to generate products which reversibly converted to glyoxal and methylglyoxal. These interconversion reactions reduced SOA production. The present study provides a new research perspective for the contribution mechanism of carbonyls in SOA formation and the findings are also helpful to efficiently evaluate the atmospheric fate of aromatic hydrocarbons.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Xilenos / Contaminantes Atmosféricos Idioma: En Revista: Sci Total Environ Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Xilenos / Contaminantes Atmosféricos Idioma: En Revista: Sci Total Environ Año: 2022 Tipo del documento: Article