Your browser doesn't support javascript.
loading
Chloroplast Phylogenomic Analyses Reveal a Maternal Hybridization Event Leading to the Formation of Cultivated Peanuts.
Tian, Xiangyu; Shi, Luye; Guo, Jia; Fu, Liuyang; Du, Pei; Huang, Bingyan; Wu, Yue; Zhang, Xinyou; Wang, Zhenlong.
Afiliación
  • Tian X; School of Life Sciences, Zhengzhou University, Zhengzhou, China.
  • Shi L; School of Life Sciences, Zhengzhou University, Zhengzhou, China.
  • Guo J; School of Life Sciences, Zhengzhou University, Zhengzhou, China.
  • Fu L; School of Life Sciences, Zhengzhou University, Zhengzhou, China.
  • Du P; Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China.
  • Huang B; Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China.
  • Wu Y; Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China.
  • Zhang X; School of Life Sciences, Zhengzhou University, Zhengzhou, China.
  • Wang Z; Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China.
Front Plant Sci ; 12: 804568, 2021.
Article en En | MEDLINE | ID: mdl-34975994
ABSTRACT
Peanuts (Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect. Arachis can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG, etc. Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid Arachis duranensis accessions being a potential AA sub-genome ancestor. In addition, Arachis monticola, a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various Arachis species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Plant Sci Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Plant Sci Año: 2021 Tipo del documento: Article País de afiliación: China