Drp1 SUMO/deSUMOylation by Senp5 isoforms influences ER tubulation and mitochondrial dynamics to regulate brain development.
iScience
; 24(12): 103484, 2021 Dec 17.
Article
en En
| MEDLINE
| ID: mdl-34988397
Brain development is a highly orchestrated process requiring spatiotemporally regulated mitochondrial dynamics. Drp1, a key molecule in the mitochondrial fission machinery, undergoes various post-translational modifications including conjugation to the small ubiquitin-like modifier (SUMO). However, the functional significance of SUMOylation/deSUMOylation on Drp1 remains controversial. SUMO-specific protease 5 (Senp5L) catalyzes the deSUMOylation of Drp1. We revealed that a splicing variant of Senp5L, Senp5S, which lacks peptidase activity, prevents deSUMOylation of Drp1 by competing against other Senps. The altered SUMOylation level of Drp1 induced by Senp5L/5S affects mitochondrial morphology probably through controlling Drp1 ubiquitination and tubulation of the endoplasmic reticulum. A dynamic SUMOylation/deSUMOylation balance controls neuronal polarization and migration during the development of the cerebral cortex. These findings suggest a novel role of post-translational modification, in which deSUMOylation enzyme isoforms competitively regulate mitochondrial dynamics via Drp1 SUMOylation levels, in a tightly controlled process of neuronal differentiation and corticogenesis.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
IScience
Año:
2021
Tipo del documento:
Article
País de afiliación:
Japón
Pais de publicación:
Estados Unidos