Your browser doesn't support javascript.
loading
Ethanol extracts of Rhaponticum uniflorum (L.) DC flowers attenuate doxorubicin-induced cardiotoxicity via alleviating apoptosis and regulating mitochondrial dynamics in H9c2 cells.
Hu, Boqin; Zhen, Dong; Bai, Meirong; Xuan, Tianqi; Wang, Yu; Liu, Mingjie; Yu, Lijun; Bai, Dongsong; Fu, Danni; Wei, Chengxi.
Afiliación
  • Hu B; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Reg
  • Zhen D; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Reg
  • Bai M; Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China. Electronic address: baimeirong@126.com.
  • Xuan T; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Reg
  • Wang Y; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Reg
  • Liu M; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Reg
  • Yu L; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Reg
  • Bai D; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Reg
  • Fu D; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Reg
  • Wei C; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Reg
J Ethnopharmacol ; 288: 114936, 2022 Apr 24.
Article en En | MEDLINE | ID: mdl-35007682
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE Loulu flowers (LLF) is the inflorescence of Rhaponticum uniflorum (L.) DC. (R. uniflorum), a member of the Compositae family. This plant possesses heat-clearing properties, detoxification effects, and is therefore frequently used for the treatment of cardiovascular diseases. AIM OF THIS STUDY This study aimed to investigate the cardioprotective effects of ethanol extracts of LLF against doxorubicin (DOX)-induced cardiotoxicity and explore the associated mechanisms. MATERIAL AND

METHODS:

Ethanol extracts of LLF were prepared and analyzed by LC-ESI-MS/MS. DOX-treated H9c2 cells and DOX-treated zebrafish models were used to explore the cardioprotective effect of ethanol extracts on myocardial function. The effects of LLF on DOX-induced cytotoxicity in H9c2 cells were investigated by MTT assay. Reactive Oxygen Species (ROS) levels, mitochondrial membrane potential (MMP), and nuclear translocation of NF-κB p65 were examined using fluorescent probes. The expression level of Bax, Bcl-2, PARP, caspase-3, cleaved-caspase3, caspase9, IκBα, p-IκBα, IKK, p-IKK, p65, p-p65, OPA1, Mfn1, MFF and Fis 1 and GAPDH was determined by western blotting.

RESULTS:

Twenty-five compounds were detected in ethanol extracts of LLF, include Nicotinamide, Coumarin, Parthenolide, and Ligustilide. Pre-treatment with LLF attenuated the DOX-induced decrease in viability and ROS production in H9c2 cells. Moreover, LLF treatment maintained the mitochondrial membrane integrity and suppressed apoptosis by upregulating expression level of Bcl-2 and downregulating the expression level of Bax, cleaved-caspase-3, cleaved-caspase-9 and cleaved-PARP. In addition, LLF significantly inhibited the DOX-induced activation of NF-κB signaling. Cells treated with DOX showed aberrant expression of mitochondrial dynamics related proteins, and these effects were alleviated by LLF pre-treatment. In conclusion, these results show that LLF can alleviate DOX-induced cardiotoxicity by blocking NF-κB signaling and re-balancing mitochondrial dynamics.

CONCLUSION:

Ethanol extracts of LLF is a potential treatment option to against DOX-induced cardiotoxicity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Extractos Vegetales / Doxorrubicina / Leuzea / Cardiotoxicidad Tipo de estudio: Etiology_studies Límite: Animals Idioma: En Revista: J Ethnopharmacol Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Extractos Vegetales / Doxorrubicina / Leuzea / Cardiotoxicidad Tipo de estudio: Etiology_studies Límite: Animals Idioma: En Revista: J Ethnopharmacol Año: 2022 Tipo del documento: Article