Your browser doesn't support javascript.
loading
Robust Fabrication of Composite 3D Scaffolds with Tissue-Specific Bioactivity: A Proof-of-Concept Study.
Krishnamoorthi, Muthu Kumar; Sarig, Udi; Baruch, Limor; Ting, Sherwin; Reuveny, Shaul; Oh, Steve; Goldfracht, Idit; Gepstein, Lior; Venkatraman, Subramanian S; Tan, Lay Poh; Machluf, Marcelle.
Afiliación
  • Krishnamoorthi MK; School of Materials Science & Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 Singapore.
  • Sarig U; Faculty of Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel.
  • Baruch L; School of Materials Science & Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 Singapore.
  • Ting S; Faculty of Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel.
  • Reuveny S; Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Guangdong-Technion Israel Institute of Technology (GTIIT), Shantou, Guangdong Province, 515063 P.R. China.
  • Oh S; Faculty of Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel.
  • Goldfracht I; Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, 138668 Singapore.
  • Gepstein L; Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, 138668 Singapore.
  • Venkatraman SS; Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, 138668 Singapore.
  • Tan LP; The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Efron St 1, Haifa 31096, Israel.
  • Machluf M; The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Efron St 1, Haifa 31096, Israel.
ACS Appl Bio Mater ; 3(8): 4974-4986, 2020 Aug 17.
Article en En | MEDLINE | ID: mdl-35021675
The basic requirement of any engineered scaffold is to mimic the native tissue extracellular matrix (ECM). Despite substantial strides in understanding the ECM, scaffold fabrication processes of sufficient product robustness and bioactivity require further investigation, owing to the complexity of the natural ECM. A promising bioacive platform for cardiac tissue engineering is that of decellularized porcine cardiac ECM (pcECM, used here as a soft tissue representative model). However, this platform's complexity and batch-to-batch variability serve as processing limitations in attaining a robust and tunable cardiac tissue-specific bioactive scaffold. To address these issues, we fabricated 3D composite scaffolds (3DCSs) that demonstrate comparable physical and biochemical properties to the natural pcECM using wet electrospinning and functionalization with a pcECM hydrogel. The fabricated 3DCSs are non-immunogenic in vitro and support human mesenchymal stem cells' proliferation. Most importantly, the 3DCSs demonstrate tissue-specific bioactivity in inducing spontaneous cardiac lineage differentiation in human induced pluripotent stem cells (hiPSC) and further support the viability, functionality, and maturation of hiPSC-derived cardiomyocytes. Overall, this work illustrates the technology to fabricate robust yet tunable 3D scaffolds of tissue-specific bioactivity (with a proof of concept provided for cardiac tissues) as a platform for basic materials science studies and possible future R&D application in regenerative medicine.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Bio Mater Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Bio Mater Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos