Your browser doesn't support javascript.
loading
Candida albicans MTLa2 regulates the mating response through both the a-factor and α-factor sensing pathways.
Li, Chao; Tao, Li; Guan, Zhangyue; Hu, Tianren; Wang, Sijia; Liang, Weihong; Zhao, Fei; Huang, Guanghua.
Afiliación
  • Li C; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
  • Tao L; Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
  • Guan Z; Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
  • Hu T; Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
  • Wang S; Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
  • Liang W; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  • Zhao F; Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
  • Huang G; Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China. Electronic address: huanggh@fudan.edu.cn.
Fungal Genet Biol ; 159: 103664, 2022 04.
Article en En | MEDLINE | ID: mdl-35026387
ABSTRACT
The diploid fungal pathogen Candida albicans has three configurations at the mating type locus (MTL) heterozygous (a/α) and homozygous (a/a or α/α). C. albicans MTL locus encodes four transcriptional regulators (MTLa1, a2, α1, and α2). The conserved a1/α2 heterodimer controls not only mating competency but also white-opaque heritable phenotypic switching. However, the regulatory roles of MTLa2 and α1 are more complex and remain to be investigated. MTLa/a cells often express a cell type-specific genes and mate as the a-type partner, whereas MTLα/α cells express α-specific genes and mate as the α-type partner. In this study, we report that the MTLa2 regulator controls the formation of mating projections through both the a- and α-pheromone-sensing pathways and thus results in the bi-mater feature of "α cells" of C. albicans. Ectopic expression of MTLa2 in opaque α cells activates the expression of not only MFA1 and STE3 (a-pheromone receptor) but also MFα1 and STE2 (α-pheromone receptor). Inactivation of either the MFa-Ste3 or MFα-Ste2 pheromone-sensing pathway cannot block the MTLa2-induced development of mating projections. However, the case is different in MTLα1-ectopically expressed opaque a cells. Inactivation of the MFα-Ste2 but not the MFa-Ste3 pheromone-sensing pathway blocks MTLα1-induced development of mating projections. Therefore, MTLa2 and MTLα1 exhibit distinct regulatory features that control the mating response in C. albicans. These findings shed new light on the regulatory mechanism of bi-mating behaviors and sexual reproduction in C. albicans.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Candida albicans / Genes del Tipo Sexual de los Hongos Idioma: En Revista: Fungal Genet Biol Asunto de la revista: GENETICA / MICROBIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Candida albicans / Genes del Tipo Sexual de los Hongos Idioma: En Revista: Fungal Genet Biol Asunto de la revista: GENETICA / MICROBIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: China