Incorporating respondent-driven sampling into web-based discrete choice experiments: preferences for COVID-19 mitigation measures.
Health Serv Outcomes Res Methodol
; 22(3): 297-316, 2022.
Article
en En
| MEDLINE
| ID: mdl-35035272
To slow the spread of COVID-19, most countries implemented stay-at-home orders, social distancing, and other nonpharmaceutical mitigation strategies. To understand individual preferences for mitigation strategies, we piloted a web-based Respondent Driven Sampling (RDS) approach to recruit participants from four universities in three countries to complete a computer-based Discrete Choice Experiment (DCE). Use of these methods, in combination, can serve to increase the external validity of a study by enabling recruitment of populations underrepresented in sampling frames, thus allowing preference results to be more generalizable to targeted subpopulations. A total of 99 students or staff members were invited to complete the survey, of which 72% started the survey (n = 71). Sixty-three participants (89% of starters) completed all tasks in the DCE. A rank-ordered mixed logit model was used to estimate preferences for COVID-19 nonpharmaceutical mitigation strategies. The model estimates indicated that participants preferred mitigation strategies that resulted in lower COVID-19 risk (i.e. sheltering-in-place more days a week), financial compensation from the government, fewer health (mental and physical) problems, and fewer financial problems. The high response rate and survey engagement provide proof of concept that RDS and DCE can be implemented as web-based applications, with the potential for scale up to produce nationally-representative preference estimates.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Aspecto:
Patient_preference
Idioma:
En
Revista:
Health Serv Outcomes Res Methodol
Año:
2022
Tipo del documento:
Article
Pais de publicación:
Países Bajos