Your browser doesn't support javascript.
loading
Hybrid machine learning to localize atrial flutter substrates using the surface 12-lead electrocardiogram.
Luongo, Giorgio; Vacanti, Gaetano; Nitzke, Vincent; Nairn, Deborah; Nagel, Claudia; Kabiri, Diba; Almeida, Tiago P; Soriano, Diogo C; Rivolta, Massimo W; Ng, Ghulam André; Dössel, Olaf; Luik, Armin; Sassi, Roberto; Schmitt, Claus; Loewe, Axel.
Afiliación
  • Luongo G; Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, 76131 Karlsruhe, Germany.
  • Vacanti G; Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Moltkestrasse, 90, 76182, Karlsruhe, Germany.
  • Nitzke V; Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, 76131 Karlsruhe, Germany.
  • Nairn D; Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, 76131 Karlsruhe, Germany.
  • Nagel C; Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, 76131 Karlsruhe, Germany.
  • Kabiri D; Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Moltkestrasse, 90, 76182, Karlsruhe, Germany.
  • Almeida TP; Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Leicester, UK.
  • Soriano DC; Engineering, Modelling and Applied Social Sciences Centre, ABC Federal University, São Bernardo do Campo, Brazil.
  • Rivolta MW; Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy.
  • Ng GA; Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Leicester, UK.
  • Dössel O; Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, 76131 Karlsruhe, Germany.
  • Luik A; Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Moltkestrasse, 90, 76182, Karlsruhe, Germany.
  • Sassi R; Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy.
  • Schmitt C; Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Moltkestrasse, 90, 76182, Karlsruhe, Germany.
  • Loewe A; Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, 76131 Karlsruhe, Germany.
Europace ; 24(7): 1186-1194, 2022 07 21.
Article en En | MEDLINE | ID: mdl-35045172
AIMS: Atrial flutter (AFlut) is a common re-entrant atrial tachycardia driven by self-sustainable mechanisms that cause excitations to propagate along pathways different from sinus rhythm. Intra-cardiac electrophysiological mapping and catheter ablation are often performed without detailed prior knowledge of the mechanism perpetuating AFlut, likely prolonging the procedure time of these invasive interventions. We sought to discriminate the AFlut location [cavotricuspid isthmus-dependent (CTI), peri-mitral, and other left atrium (LA) AFlut classes] with a machine learning-based algorithm using only the non-invasive signals from the 12-lead electrocardiogram (ECG). METHODS AND RESULTS: Hybrid 12-lead ECG dataset of 1769 signals was used (1424 in silico ECGs, and 345 clinical ECGs from 115 patients-three different ECG segments over time were extracted from each patient corresponding to single AFlut cycles). Seventy-seven features were extracted. A decision tree classifier with a hold-out classification approach was trained, validated, and tested on the dataset randomly split after selecting the most informative features. The clinical test set comprised 38 patients (114 clinical ECGs). The classifier yielded 76.3% accuracy on the clinical test set with a sensitivity of 89.7%, 75.0%, and 64.1% and a positive predictive value of 71.4%, 75.0%, and 86.2% for CTI, peri-mitral, and other LA class, respectively. Considering majority vote of the three segments taken from each patient, the CTI class was correctly classified at 92%. CONCLUSION: Our results show that a machine learning classifier relying only on non-invasive signals can potentially identify the location of AFlut mechanisms. This method could aid in planning and tailoring patient-specific AFlut treatments.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aleteo Atrial / Ablación por Catéter Tipo de estudio: Diagnostic_studies / Etiology_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Europace Asunto de la revista: CARDIOLOGIA / FISIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aleteo Atrial / Ablación por Catéter Tipo de estudio: Diagnostic_studies / Etiology_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Europace Asunto de la revista: CARDIOLOGIA / FISIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido