Your browser doesn't support javascript.
loading
Wavelength, dose, skin type and skin model related radical formation in skin.
Meinke, M C; Busch, L; Lohan, S B.
Afiliación
  • Meinke MC; Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • Busch L; Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • Lohan SB; Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35032 Marburg, Germany.
Biophys Rev ; 13(6): 1091-1100, 2021 Dec.
Article en En | MEDLINE | ID: mdl-35047091
ABSTRACT
The exposure to sun radiation is indispensable to our health; however, a long-term and high exposure could lead to cell damage, erythema, premature skin aging, and promotion of skin tumors. An underlying pathomechanism is the formation of free radicals which may induce oxidative stress at elevated concentrations. Different skin models, such as porcine-, murine-, human- ex vivo skin, reconstructed human skin (RHS) and human skin in vivo, were investigated during and after irradiation using X- and L-band EPR spectroscopy within different spectral regions (UVC to NIR). The amount of radical formation was quantified with the spin probe PCA and the radical types were measured ex vivo with the spin trap DMPO. The radiation dose influences the types of radicals formed in the skin. While reactive oxygen species (ROS) are always pronounced at low doses, there is an increase in lipid oxygen species (LOS) at high doses. Furthermore, the radical types arise independent from the irradiation wavelength, whereas the general amount of radical formation differs with the irradiation wavelength. Heat pre-stressed porcine skin already starts with higher LOS values. Thus, the radical type ratio might be an indicator of stress and the reversal of ROS/LOS constitutes the point where positive stress turns into negative stress.Compared to light skin types, darker types produce less radicals in the ultraviolet, similar amounts in the visible and higher ones in the infrared spectral region, rendering skin type-specific sun protection a necessity.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biophys Rev Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biophys Rev Año: 2021 Tipo del documento: Article País de afiliación: Alemania