Your browser doesn't support javascript.
loading
Interactions of Nereistoxin and Its Analogs with Vertebrate Nicotinic Acetylcholine Receptors and Molluscan ACh Binding Proteins.
Kem, William R; Andrud, Kristin; Bruno, Galen; Xing, Hong; Soti, Ferenc; Talley, Todd T; Taylor, Palmer.
Afiliación
  • Kem WR; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA.
  • Andrud K; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA.
  • Bruno G; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA.
  • Xing H; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA.
  • Soti F; Department of Neurology, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA.
  • Talley TT; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA.
  • Taylor P; Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
Mar Drugs ; 20(1)2022 Jan 04.
Article en En | MEDLINE | ID: mdl-35049904
Nereistoxin (NTX) is a marine toxin isolated from an annelid worm that lives along the coasts of Japan. Its insecticidal properties were discovered decades ago and this stimulated the development of a variety of insecticides such as Cartap that are readily transformed into NTX. One unusual feature of NTX is that it is a small cyclic molecule that contains a disulfide bond. In spite of its size, it acts as an antagonist at insect and mammalian nicotinic acetylcholine receptors (nAChRs). The functional importance of the disulfide bond was assessed by determining the effects of inserting a methylene group between the two sulfur atoms, creating dimethylaminodithiane (DMA-DT). We also assessed the effect of methylating the NTX and DMA-DT dimethylamino groups on binding to three vertebrate nAChRs. Radioligand receptor binding experiments were carried out using washed membranes from rat brain and fish (Torpedo) electric organ; [3H]-cytisine displacement was used to assess binding to the predominantly high affinity alpha4beta2 nAChRs and [125I]-alpha-bungarotoxin displacement was used to measure binding of NTX and analogs to the alpha7 and skeletal muscle type nAChRs. While the two quaternary nitrogen analogs, relative to their respective tertiary amines, displayed lower α4ß2 nAChR binding affinities, both displayed much higher affinities for the Torpedo muscle nAChR and rat alpha7 brain receptors than their respective tertiary amine forms. The binding affinities of DMA-DT for the three nAChRs were lower than those of NTX and MeNTX. An AChBP mutant lacking the C loop disulfide bond that would potentially react with the NTX disulfide bond displayed an NTX affinity very similar to the parent AChBP. Inhibition of [3H]-epibatidine binding to the AChBPs was not affected by exposure to NTX or MeNTX for up to 24 hr prior to addition of the radioligand. Thus, the disulfide bond of NTX is not required to react with the vicinal disulfide in the AChBP C loop for inhibition of [3H]-epibatidine binding. However, a reversible disulfide interchange reaction of NTX with nAChRs might still occur, especially under reducing conditions. Labeled MeNTX, because it can be readily prepared with high specific radioactivity and possesses relatively high affinity for the nAChR-rich Torpedo nAChR, would be a useful probe to detect and identify any nereistoxin adducts.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Insecticidas / Toxinas Marinas / Anélidos Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Mar Drugs Asunto de la revista: BIOLOGIA / FARMACOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Insecticidas / Toxinas Marinas / Anélidos Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Mar Drugs Asunto de la revista: BIOLOGIA / FARMACOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza