Your browser doesn't support javascript.
loading
Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria monocytogenes.
Rodríguez-Melcón, Cristina; Alonso-Calleja, Carlos; García-Fernández, Camino; Carballo, Javier; Capita, Rosa.
Afiliación
  • Rodríguez-Melcón C; Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain.
  • Alonso-Calleja C; Institute of Food Science and Technology, University of León, 24071 León, Spain.
  • García-Fernández C; Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain.
  • Carballo J; Institute of Food Science and Technology, University of León, 24071 León, Spain.
  • Capita R; Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain.
Biology (Basel) ; 11(1)2021 Dec 29.
Article en En | MEDLINE | ID: mdl-35053044
ABSTRACT
When selecting effective doses of antimicrobials, be they biocides or antibiotics, it is essential to know the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of these substances. The present research determined the MICs and MBCs for three biocides, sodium hypochlorite (SH), benzalkonium chloride (BC), and peracetic acid (PAA), and nine antibiotics in eight strains of Listeria monocytogenes of varying serotypes. Marked intra-species differences were observed in the resistance of L. monocytogenes to the biocides and antibiotics. The MICs (ppm) for the biocides ranged between 1750 and 4500 for SH, 0.25 and 20.00 for BC, and 1050 and 1700 for PAA. Their MBCs (ppm) ranged from 2250 to 4500 for SH, 0.50 to 20.00 for BC, and 1150 to 1800 for PAA. The MICs (ppm) for antibiotics lay between 1 and 15 for ampicillin, 8 and 150 for cephalothin, 20 and 170 for cefoxitin, 0.05 and 0.20 for erythromycin, 4 and 50 for chloramphenicol, 3 and 100 for gentamicin, 2 and 15 for tetracycline, 2 and 80 for vancomycin, and 160 and 430 for fosfomycin. The corresponding MBCs (ppm) were from 5 to 20 for ampicillin, 9 to 160 for cephalothin, 70 to 200 for cefoxitin, 4 to 5 for erythromycin, 9 to 70 for chloramphenicol, 5 to 100 for gentamicin, 3 to 30 for tetracycline, 3 to 90 for vancomycin, and 160 to 450 for fosfomycin. Notably, erythromycin showed considerable efficacy, demonstrated by the low values for both MIC and MBC. Based on EUCAST and the CLSI criteria, all strains were susceptible to erythromycin. All strains were resistant to cephalothin, cefoxitin, gentamicin, and fosfomycin. Further values for resistance were 87.50% for ampicillin and vancomycin, 75.00% for tetracycline, and 62.50% for chloramphenicol. The high prevalence of antibiotic resistance is a matter for concern. A positive correlation was found between MIC and MBC values for most of the biocides and antibiotics. The higher the hydrophobicity of the cell surface, the higher the susceptibility to biocides, suggesting that surface characteristics of bacterial cells influence resistance to these compounds.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Biology (Basel) Año: 2021 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Biology (Basel) Año: 2021 Tipo del documento: Article País de afiliación: España
...