Long-Term High-Fat Diet Consumption Depletes Glial Cells and Tyrosine Hydroxylase-Containing Neurons in the Brain of Middle-Aged Rats.
Cells
; 11(2)2022 01 15.
Article
en En
| MEDLINE
| ID: mdl-35053411
Epidemiologic studies have indicated that dyslipidemia may facilitate the progression of neuronal degeneration. However, the effects of chronic dyslipidemia on brain function, especially in older individuals, remain unclear. In this study, middle-aged 37-week-old male Wistar-Kyoto rats were fed a normal diet (ND) or a 45% high-fat diet (HFD) for 30 weeks (i.e., until 67 weeks of age). To study the effects of chronic dyslipidemia on the brain, we analyzed spontaneous locomotor activity, cognitive function, and brain tissues in both groups of rats after 30 weeks. Compared with age-matched rats fed a ND, Wistar-Kyoto rats fed a HFD had dyslipidemia and showed decreased movement but normal recognition of a novel object. In our brain analyses, we observed a significant decrease in astrocytes and tyrosine hydroxylase-containing neurons in the substantia nigra and locus coeruleus of rats fed a HFD compared with rats fed a ND. However, hippocampal pyramidal neurons were not affected. Our findings indicate that the long-term consumption of a HFD may cause lipid metabolism overload in the brain and damage to glial cells. The decrease in astrocytes may lead to reduced protection of the brain and affect the survival of tyrosine hydroxylase-containing neurons but not pyramidal neurons of the hippocampus.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Tirosina 3-Monooxigenasa
/
Encéfalo
/
Envejecimiento
/
Neuroglía
/
Conducta Alimentaria
/
Dieta Alta en Grasa
/
Neuronas
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Cells
Año:
2022
Tipo del documento:
Article
País de afiliación:
Taiwán
Pais de publicación:
Suiza