Your browser doesn't support javascript.
loading
Anisotropic Magnon Spin Transport in Ultrathin Spinel Ferrite Thin Films─Evidence for Anisotropy in Exchange Stiffness.
Li, Ruofan; Li, Peng; Yi, Di; Riddiford, Lauren J; Chai, Yahong; Suzuki, Yuri; Ralph, Daniel C; Nan, Tianxiang.
Afiliación
  • Li R; Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States.
  • Li P; Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States.
  • Yi D; Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States.
  • Riddiford LJ; State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
  • Chai Y; Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States.
  • Suzuki Y; Department of Applied Physics, Stanford University, Stanford, California 94305, United States.
  • Ralph DC; School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
  • Nan T; Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States.
Nano Lett ; 22(3): 1167-1173, 2022 Feb 09.
Article en En | MEDLINE | ID: mdl-35077185
ABSTRACT
Magnon-mediated spin flow in magnetically ordered insulators enables long-distance spin-based information transport with low dissipation. In the materials studied to date, no anisotropy has been observed in the magnon propagation length as a function of propagation direction. Here, we report measurements of magnon spin transport in a spinel ferrite, magnesium aluminum ferrite MgAl0.5Fe1.5O4 (MAFO), which has a substantial in-plane 4-fold magnetic anisotropy. We observe spin diffusion lengths > 0.8 µm at room temperature in 6 nm films, with spin diffusion lengths 30% longer along the easy axes compared to the hard axes. The sign of this difference is opposite to the effects just of anisotropy in the magnetic energy for a uniform magnetic state. We suggest instead that accounting for anisotropy in exchange stiffness is necessary to explain these results. These findings provide an approach for controlling magnon transport via strain, which opens new opportunities for designing magnonic devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos